Hagler and the first named author introduced a class of hereditarily $l_1$ Banach spaces which do not possess the Schur property. Then the first author extended these spaces to a class of hereditarily $l_p$ Banach spaces for $1\leq p<\infty $. Here we use these spaces to introduce a new class of hereditarily $l_p(c_0)$ Banach spaces analogous of the space of Popov. In particular, for $p=1$ the spaces are further examples of hereditarily $l_1$ Banach spaces failing the Schur property.
We characterize Banach lattices E and F on which the adjoint of each operator from E into F which is order Dunford-Pettis and weak Dunford-Pettis, is Dunford-Pettis. More precisely, we show that if E and F are two Banach lattices then each order DunfordPettis and weak Dunford-Pettis operator T from E into F has an adjoint Dunford-Pettis operator T ′ from F ′ into E ′ if, and only if, the norm of E ′ is order continuous or F ′ has the Schur property. As a consequence we show that, if E and F are two Banach lattices such that E or F has the Dunford-Pettis property, then each order Dunford-Pettis operator T from E into F has an adjoint T ′ : F ′ → E ′ which is Dunford-Pettis if, and only if, the norm of E ′ is order continuous or F ′ has the Schur property.
These notes are dedicated to the study of the complexity of several classes of separable Banach spaces. We compute the complexity of the Banach-Saks property, the alternating Banach-Saks property, the complete continuous property, and the LUST property. We also show that the weak Banach-Saks property, the Schur property, the Dunford-Pettis property, the analytic Radon-Nikodym property, the set of Banach spaces whose set of unconditionally converging operators is complemented in its bounded operators, the set of Banach spaces whose set of weakly compact operators is complemented in its bounded operators, and the set of Banach spaces whose set of Banach-Saks operators is complemented in its bounded operators, are all non Borel in ${\rm SB}$. At last, we give several applications of those results to non-universality results.