In this study, we hypothesized that colonization of olive trees (Olea europaea L.) with the arbuscular mycorrhizal fungus Rhizophagus irregularis could modify the profiles of rhizosphere microbial communities with subsequent effects on nutrient uptake that directly affects olive tree physiology and performance. In this context, a greenhouse experiment was carried out in order to study the effects of mycorrhizal colonization by R. irregularis on photosynthesis, pigment content, carbohydrate profile, and nutrient uptake in olive tree. After six months of growth, photosynthetic rate in mycorrhizal (M) plants was significantly higher than that of nonmycorrhizal plants. A sugar content analysis showed enhanced concentrations of mannitol, fructose, sucrose, raffinose, and trehalose in M roots. We also observed a significant increase in P, K, Ca, Mg, Zn, Fe, and Mn contents in leaves of the M plants. These results are important, since nutrient deficiency often occurs in Mediterranean semiarid ecosystems, where olive trees occupy a major place., M. Tekaya, B. Mechri, N. Mbarki, H. Cheheb, M. Hammami, F. Attia., and Obsahuje bibliografii
Physico-chemical properties and carbohydrate-binding specificity of hemagglutination activity (HA) were compared in tissue lysates and haemolymph of unfed and bloodied females of five sandfly species. Sandfly gut lectins were found to be heat-labile, sensitive to dithiotreitol treatment, freezing/thawing procedures and were affected by divalent cations. The pH optimum of HA ranged between 7.0-7.5. Specificity of gut HA of all species studied was directed towards aminosugars and some glycoconjugates, mainly lipopolysaccharide from Escherichia coli K-235, heparin and fetuin. Gut HA of Phlebotomus papatasi (Scopoli, 1786) was strongly inhibited by lipophosphoglycan (LPG) from Leishmania major promastigotes. In females, that took blood, the HA was higher but the carbohydrate-binding specificity remained the same; this suggests that the same lectin molecule was present, at different levels, both in unfed and fed flies. High HA was found in ovaries of fed females of Lutzomyia longipalpis (Lutz et Nieva, 1912), P. papatasi and P. duhoscqi Neveu-Lemaire, 1906. In P. papatasi and P. duboscqi the HA was present also in the haemolymph and head lysates of both fed and unfed females. Carbohydrate-binding specificity of HA present in these tissues was similar with the gut lectin.
Changes in chloroplastidic pigments, gas exchange and carbohydrate concentrations were assessed during the rapid initial expansion of C. guianensis leaflet. Leaves at metaphyll stage were tagged and assessments were carried out 14, 17, 20, 23, 27, and 31 days later. Pigments synthesis, distribution and accumulation were uniform among leaflet sections (basal, median and apical). Chlorophyll (Chl) a, Chl b, Chl (a+b), and total carotenoids (Car) concentrations were significantly increased after 27 days from metaphyll, and the most expressive increases were parallel to lower specific leaflet area. Chl a/b was lower on day 14 and it was increased on subsequent days. Negative net photosynthesis rate (PN), and the lowest stomatal conductance (gs) and transpiration (E) were registered on day 14, following significant increases on subsequent days. The Chl (a+b) and Chl a effects on PN were more expressive until day 20. Intercellular to ambient CO2 concentration ratio (Ci/Ca) was higher on day 14 and lower on subsequent days, and no stomatal limitation to CO2 influx inside leaflets was observed. Leaflet temperature was almost constant (ca. 35°C) during leaflet development. Sucrose and starch concentrations were increased in parallel to increases in PN. Altogether, these results highlight the main physiological changes during C. guianensis leaflet expansion and they should be considered in future experiments focusing on factors affecting PN in this species. and F. K. C. Moraes ... [et al.].
A histochemical study using lectin methods was performed on myxosporean parasites from vastly different fish hosts from marine and fresh waters. Six biotinylated lectins were used (WGA, SBA, BS-I, Con-А, UEA-I and SNA). The binding paltem of Con-A and WGA revealed the presence of mannose and/or glucose, and N-acetyl-D-glucosamine respectively, in polar capsules and valves of most of the myxosporea assayed. Thus, chitin may be present in polar capsules and/or valves of myxosporean spores. The BS-I binding pattern showed the presence of a-!)-galactose and/or N-acetyl-D-galactosamine residues in polar capsules of Kudoa sp., Zschokkeìla mugilis Sitjà-Bobadilla et Alvarez-Pellitero, 1993 and Leplotheca sp., and in the valves of the latter. Scarce amounts of N-acetyl-D-galactosamine and/or α-D-galactose were demonstrated by SBA binding in Sphaerospora dicentrarchi Sitjà-Bobadilla et Alvarez-Pellitero 1992, Leplotheca sp. and Kudoa sp. valves, and in Leptotheca sp. polar capsules. The UEA-I staining indicated the absence ofa-L-fucose in all the myxosporea assayed except in Leptotheca sp. N-acety!neuraminic acid was detected with SNA in the polar capsules and sporoplasms of Polysporoptasma sparis Sitjà-Bobadilla et-Alvarez-Pellitero, 1995 and in the polar capsules and valves of Kudoa sp. These results indicate that, although Myxosporea may have conserved carbohydrate structures, some of them can show significantly different binding patterns, which may be useful in diagnostic and functional studies.
The current concentrations of O3 have been shown to cause significant negative effects on crop yield. The present levels of ozone may not induce visible symptoms in most of plants, but can result in substantial losses in reproductive output. This paper considers the impact of ambient O3 on gas exchange, photosynthetic pigments, chlorophyll (Chl) fluorescence and carbohydrate levels in the flag leaf of wheat plants during various stages of reproductive development using open-top chambers. Mean O3 concentration was 45.7 ppb during wheat growth and 50.2 ppb after flag leaf development. Reproductive stage showed higher exceedence of O3 above 40 ppb compared to the vegetative stage. Diurnal variations in net photosynthetic rate (PN) and stomatal conductance (gs), intercellular CO2 concentration (Ci), Fv/Fm ratio, photosynthetic pigments, soluble sugars, and starch were measured at 10, 30, and 50 days after flag leaf expansion (DAFE). The results showed reductions in PN, gs, Fv/Fm ratio, photosynthetic pigments and starch, and increases in Ci, F0, and soluble sugars in nonfiltered chambers (NFCs) compared to filtered chambers (FCs). Maximum changes in measured parameters were observed at 50 DAFE (i.e. grain filling and setting phase). Diurnal variation in PN showed double peaked curve in both FCs and NFCs, but delayed peak and early depression in NFCs. Stomatal conductance was significantly lower in NFCs. The study suggests that higher prevalence of ambient O3 during reproductive development led to significant alteration in physiological vitality of wheat having potential negative influence on yield. and R. Rai, M. Agrawal, S. B. Agrawal.
The frequent occurrence of monsoon winds usually leads to the formation of inverted soybean leaves. However, the effect of leaf inversion on photosynthetic capacity remains unclear. The responses of leaf anatomical traits, chlorophyll fluorescence induction kinetics parameters, photosynthetic capacity, and nonstructural carbohydrates of fully expanded leaves to inversion of leaves in two soybean cultivars were studied. Leaf inversion decreased the stomatal size and thickness of developed leaves. The net photosynthetic rate was significantly reduced under leaf inversion, which resulted from reduced excitation energy trapping and electron transport of PSII reaction center. Leaf inversion increased leaf temperature 10 d after leaf inversion but reduced the instantaneous water-use efficiency compared to normally oriented leaves. Due to the decreased light-saturated net photosynthetic rate, the soluble sugars of light-sensitive cultivar decreased significantly. In summary, leaf inversion deactivated the PSⅡ reaction centers, reduced photosynthesis and nonstructural carbohydrates in upper canopy soybean leaves.
Autophagy is the basic catabolic mechanism that involves degradation of dysfunctional cellular components through the action of lysosome as well as supplying energy and compounds for the synthesis of essential biomacromolecules. This process enables cells to survive stress from the external environment like nutrient deprivation. Autophagy is important in the breakdown of proteins, carbohydrates and lipids as well. Furthermore, recent studies have shown that autophagy is critical in wide range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including lysosomal storage disease, myopathies, neurodegeneration and various metabolic disorders. This review summarizes the most up-to-date findings on what role autophagy plays in metabolism., Z. Papáčková, M. Cahová., and Obsahuje bibliografii
Leaf senescence can be induced by numerous factors. In order to explore the relationship between root respiration and leaf senescence, we utilized different types of phloem girdling to control the root respiration of Alhagi sparsifolia and its physiological response. Our results showed that both girdling and inhibition of root respiration led to a decline of stomatal conductance, photosynthesis, transpiration rate, chlorophyll (Chl) a, Chl b, carotenoid (Car) content, Chl a/b, Chl/Car, water potential, and Chl a fluorescence, as well as to an increase of abscisic acid (ABA), proline, and malondialdehyde content in leaves and to upregulation of senescence-associated gene expression. Our present work implied that both inhibition of root respiration and girdling can induce leaf senescence. In comparison with phloem girdling, the leaf senescence caused by inhibition of root respiration was less significant. The reason for girdling-induced senescence was ABA and carbohydrate accumulation. Senescence induced by inhibition of root respiration occurred due to leaf water stress resulting from inhibition of water absorption., G.-L. Tang, X.-Y. Li, L.-S. Lin, Y. Hu, F.-J. Zeng., and Obsahuje seznam literatury
The aim of this study was to evaluate the effects of low air temperature during nocturnal (TN) and diurnal (TD) periods as well as the substrate temperature (TS) on photosynthesis of 'Valencia' orange tree grafted on Rangpur lime rootstock. The experiment was carried out in a growth chamber with seven-month-old plants. The plants were exposed to the following temperature regimes: low substrate temperature (LTS, with: TD = 28°C, TN = 20°C,
TS = 10°C); low air temperature during night (LTN, with: TD = 28°C, TN = 10°C, TS = 26°C); low temperature during nighttime and also low substrate temperature (LTSN, with: TD = 28°C, TN = 10°C,
TS = 10°C); low air temperature during both diurnal and nocturnal periods (LTND, with: TD = 17°C, TN = 10°C, TS = 26°C); and finally to low air temperature (night and day) and low substrate temperature (LTSND, with: TD = 17°C, TN = 10°C, TS = 10°C). As reference (control), plants were subjected to TD = 28°C, TN = 20°C, and TS = 26°C. Measurements of leaf gas exchange, photochemical activity and carbohydrate concentrations were performed after six days of exposure to each thermal treatment. Compared to the control, all thermal regimes caused reductions in photosynthesis due to diffusive and metabolic limitations. The photoinhibition was transient in plants exposed to night and substrate low temperatures, whereas it was severe and chronic in plants subjected to chilling during the diurnal period. However, the lowest photosynthesis was observed in plants with low substrate temperature of 10°C (in LTS, LTSND and LTSN treatments), regardless of air temperature. The occurrence of cold night and/or its combination with low substrate temperature caused accumulation of starch in leaves. When considering carbohydrate concentrations in stems and roots, it was not possible to establish a clear response pattern to chilling. In conclusion, the low substrate temperature causes a greater reduction of CO2 assimilation in citrus plants as compared to the occurrence of low air temperature, being such response a consequence of diffusive and biochemical limitations. and C. M. A. Santos ... [et al.].