Changes in the content of pigments and rate of photosynthesis in Azolla microphylla Kaulf. fronds were measured during growth under solar and ultraviolet-C (UV-C) supplemented solar radiation. Maximum content of total chlorophyll (Chl) was observed on the 13th day (termination of the experiment) of treatment in both control and treated plants. The treated plants had significantly lower total Chl and carotenoid contents than the control plants during the 1st day of growth. After the 4th day of exposure to UV-C supplemented solar radiation, the Chl and carotenoids accumulation increased in treated plants, so that the pigment concentration in the treated fronds was nearer to the control values after the 13th day of treatment. Significant increase in UV absorbing pigments, anthocyanins, and flavonoids was observed at the 13th day of treatment. In spite of the roughly similar photosynthetic pigment concentration, the photosynthetic activity measured as the rate of electron transport at photosystem 2 was only 65 % of the control values after 13 d of UV-C exposure. and M. Jayakumar ... [et al.].
In comparison to cv. Torsdag, in leaves of low-productive Pisum sativum L. chlorophyll mutants the decrease in chlorophyll content was caused by the decrease in cell number per unit volume. Qualitative changes in activities of photosystem (PS) 1 in mutant M2004, and quantitative changes of PS1 and PS2 in mutants M2004 and M2014 and in hybrids were also found. However, the activity of ribulose-1,5-bisphosphate carboxylase (RuBPC) in M2014, and those of RuBPC and glyceraldehyde phosphate dehydrogenase in M2004 and hybrids were higher than in cv. Torsdag. The hybrids inherited the normal structure of photosynthetic apparatus of standard genotype in parallel with the compensatory gene complex of M2004, which was expressed at many levels of organization. This may be the basis of hybrid vigour in this case. and O. B. Vaishlya ... [et al.].
Photosynthetic pigment contents of the second sexual generation of a cybrid plant (C-18-1) resulting from Solanum nigrum genome and Solanum tuberosum plastome were compared to those of the original (S. nigrum). Chloroplast ultrastructure alterations among S. tuberosum, cybrid, and S. nigrum were also studied. Leaf segments of both the cybrid and S. nigrum plants were cultured on shoot induction medium [B5 supplemented with 0.56 g m-3 benzylaminopurine (BAP)] for one week in light, to induce adventitious bud formation. These leaf segments were then placed in darkness for 5 weeks to form a white shoot. The respective cybrid plant had the same phenotype of the fusion recipient plant (S. nigrum) and was fertile. The rate of photosynthetic pigment biosynthesis in the white cybrid shoots was lower than that of the original plant shoots after subjecting the two plants to the same conditions of different irradiation periods (0, 2, 4, 6, 8, and 10 d). At the 10-d irradiation period of two white shoot plants, the total pigment content of S. nigrum shoot increased approximately 3-fold over that of the cybrid shoot. Numbers of grana and thylakoids as well as chloroplast size were decreased in cybrid cells in comparison to those in S. tuberosum cells. Under atrazine stress, while the chloroplast ultrastructure of the cybrid cells (atrazine sensitive) was strongly influenced, the chloroplasts of S. nigrum (atrazine resistant) were not affected. and K. A. Fayez, A. M. Hassanein.
Fifty-d-old poplar (Populus deltoides L.) plants were irrigated with 50-200 mM NaCl. 100 and 200 mM NaCl significantly reduced net photosynthetic rate, chlorophyll and carotenoid contents, leaf area, dry matter accumulation, and harvest index (HI) in all tested poplar clones (Bahar, S7C15, and WSL22). Clone S7C15 was more tolerant to salinity than the other clones. and M. Singh, M. Jain, R. C. Pant.
The relationships between drought response and anatomical/physiological properties were assessed in two poplar clones belonging to the Aigeros section: Populusxeuramericana clone Dorskamp (drought-tolerant) and clone Luisa Avanzo (drought-sensitive). Cuttings of both clones were exposed for 12 h to 0 mM (control). 50 mM (osmotic potential -0.112 MPa), and 150 mM (-0.336 MPa) mannitol. In control, Dorskamp had smaller stomata than Luisa Avanzo, one or two layers of palisade cells, a spongy mesophyll, and high concentrations of antioxidative compounds (ascorbate, glutathione). After exposure to 50 or 150 mM mannitol, both clones closed their stomata: leaf conductance and opening of stomata decreased. When exposed to 50 mM mannitol, net photosynthetic rate (PN) and chlorophyll (Chl) and total solute contents remained stable; ribulose-1,5-bisphosphate carboxylase/-oxygenase activity, Chl synthesis and turn-over, ascorbate peroxidase and glutathione reductase activities were less affected in Dorskamp than in Luisa Avanzo. Following an exposure to 150 mM mannitol, Dorskamp exhibited higher PN and higher contents of antioxidants (ascorbate, glutathione) and antioxidative enzymes (ascorbate peroxidase, glutathione reductase) than Luisa Avanzo. Hence the drought-tolerant poplar was able to better avoid and tolerate osmotic stress. and M. Courtois, E. Boudouresque, G. Guerrier.
Pendulum walnut leaves exhibited various adaptive responses related to the regulation of photon interception such as specific downward orientation, greater leaf area, and larger pigment pool. Changes in the regulation of PS2 such as higher thermal dissipation (NPQ) and lower quantum efficiency (ΦPS2) that protect the photosynthetic apparatus against damages were also found. The growth and photosynthetic features of pendulum walnut leaf are interpreted as adaptations that allow the pendulum walnut tree to compensate the impaired ability by appropriate growth to ensure the energy needs for photosynthesis, respectively for biomass formation. and L. Atanasova ... [et al.].
Seedlings of Chloris virgata were treated with varying (0-160 mM) salt-stress (SS; 1 : 1 molar ratio of NaCl to Na2SO4) or alkali-stress (AS; 1 : 1 molar ratio of NaHCO3 to Na2CO3). To compare these effects, relative growth rates (RGR), stored energy, photosynthetic pigment contents, net photosynthetic rates, stomatal conductance, and transpiration rates were determined. Both stresses did not change significantly the photosynthetic parameters of C. virgata under moderate stress (below 120 mM). Photosynthetic ability decreased significantly only at high stress (160 mM). Thus C. virgata, a natural alkali-resistant halophyte, adapts better to both kinds of stress. The inhibition effects of AS on RGR and energy storage of C. virgata were significantly greater than that of SS of the same intensity. The energy consumption of C. virgata was considerably greater while resisting AS than while resisting SS. and C. W. Yang ... [et al.]
In canopy shade leaves of grapevine (Vitis vinifera L. cv. Moscato giallo) grown in the field the contents of chlorophyll (Chl), carotenoids (Car), and soluble protein per fresh mass were lower than in sun leaves. RuBPC activity, in vivo nitrate reductase activity (indicator of nitrate utilisation), apparent electron transport rate, and photochemical fluorescence quenching were also significantly reduced in canopy shade leaves. When various photosynthetic activities were followed in isolated thylakoids, canopy shade leaves exerted a marked inhibition of whole chain and photosystem (PS) 2 activity. Smaller inhibition of PS1 activity was observed even in high-level canopy shade (HS) leaves. The artificial exogenous electron donors, DPC and NH2OH, significantly restored the loss of PS2 activity in HS leaves. Similar results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements. The marked loss of PS2 activity in canopy shade leaves was due to the loss of 47, 43, 33, 28-25, 23, 17, and 10 kDa polypeptides. and M. Bertamini, N. Nedunchezhian.
PSI trimer to monomer ratio in intact cyanobacterial cells and isolated thylakoids was analysed by two noninvasive, in vivo methods; low-temperature fluorescence emission and circular dichroism spectroscopy. We measured fluorescence emission spectra of cells upon chlorophyll (Chl, 436 nm) excitation. All three species - Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120, and Spirulina platensis - showed shifted Chl peak, indicating they have different spectral properties. CD spectroscopy revealed the highest intensity at 515 nm (PSI peak) in Spirulina platensis cells, which may originate from PSI multi-oligomerisation. The most sensitive response to heat treatment in this strain was the oligomerisation of PSI RCs. PSI dimers and tetramers in Anabaena cells showed smaller changes of the CD signal upon the heat treatment compared to that of Synechocystis WT. The lack of γ-linolenic acid affected the filament morphology by the loss of the spiral shape and the PSI monomerisation in Spirulina I22., T. Zakar, L. Kovacs, S. Vajravel, E. Herman, M. Kis, H. Laczko-Dobos, Z. Gombos., and Obsahuje bibliografické odkazy
Elevated temperature inhibited the accumulation of chlorophyll and photosynthetic proteins, and the development of photochemical activity, however, carotenoids continued to accumulate. Signal transduction pathway involved in protochlorophyllide oxidoreductase was unaffected by elevated temperature of 38°C. Two-dimensional gel electrophoresis of stroma proteins showed similar patterns in the dark-grown seedlings and seedlings irradiated at elevated temperature, although some low molecular mass proteins accumulated at 38°C. In contrast, seedlings irradiated at 25°C showed complex pattern of proteins. Hence the development of chloroplast and its associated functions during irradiation of etiolated seedlings are inhibited by elevated temperature. and A. K. Singh, G. S. Singhal.