The Betic Cordillera, located at the westernmost end of the Mediterranean alpine belt, is deformed by overprinted folds and faults that produced the present-day relief since the Tortonian. In the frame of the COST 625 action, four sectors have been studied in the central part of the cordillera. In the Granad a Depression, the large NW-SE Padul normal fault deforms the SW periclinal end of the Sierra Nevada antiform. MT surveys in dicate the continuity in depth of high and low angle normal seismogenic faults and the presence of act ive detachment faults. In Tabernas regi on a good example of interaction between a N W-SE propagating normal fault, E-W strike-slip faults and the fold system is studied. In the Sierra Tejeda-Zafarraya and in the Balanegra-Sierra de Gádor areas, two new GPS networks ha ve been installed to determine the interaction and the development of large antiformal struct ures and normal faults with E-W and NW-SE orientations. However, taking into account the low tectonic activity of the studi ed region, a period of more than 5 year could be needed to determine with enough accuracy the development rate of the structures., Jesús Galindo-Zaldívar, Antonio Gil, Carlos Sanz de Galdeano, Stefan Shanov and Dumitru Stanica., and Obsahuje bibliografické odkazy
A grant project for the period 2003-2005, supported by the Grant Agency of the Czech Republic, was set up to determine properties of seismic waves and the structure of the uppermost part of the Earth´s crust in the territory of northern Moravia and Silesia. Quarry blasts and mining induced seismic events served as seismic sources. Permanent, temporary and portable seismic stations were used for the monitoring of these seismic events. During the experiments local microearthquakes were also detected and localized. For the complex evaluation of seismic wave features, data of the CELEBRATION 2000 and SUDETES 2003 refraction experiments were incorporated, as well. The velocity-depth dependence of body waves was searched by joint inversions of travel times of Pg/Sg phases. A special feature of the wave trains, generated by quarry blasts, was a pronounced dispersive character of short-period Rayleigh surface waves. These waves enabled us to establish their dispersion curves, on the basis of which the structure of superficial layers was determined down to a depth of several hundreds of meters., Karel Holub, Jaromír Knejzlík, Bohuslav Růžek, Jana Rušajová and Oldřich Novotný., and Obsahuje bibliografii