In cases of human malaria, children suffer very high rates of morbidity and mortality. To analyze the mechanisms involved in age-dependent protection against malaria, we investigated the characterization of immune responses to Plasmodium yoelii 17XNL (P.y 17XNL) in young (3 weeks) and middle-aged (8 months) C57BL/6 mice. In this study, we found that 100% of young mice succumbed to P.y 17XNL infection with higher parasitemia, while middle-aged mice were able to clear blood parasites and no mortality was observed. These observations suggested that the young C57BL/6 mice were susceptible to P.y 17XNL infection, whereas the middle-aged mice were resistant. Cellular analysis revealed that both the numbers of splenic myeloid dendritic cells (mDCs) as well as the expression of DC maturation markers were higher in middle-aged mice than those in young mice. The numbers of IgG1- or IgG2a-secreting B cells increased markedly in middle-aged mice after infection with P.y 17XNL. The dynamic change of the number of CD4+CD25+Foxp3+ regulatory T cells (Tregs) in mice infected with P.y 17XNL was also different between the two groups. In addition, the levels of IFN-γ and NO increased in both groups during early parasite infection, while there was also an obvious increase in IL-4 production in the infected middle-aged mice. The change in IL-10 levels following infection was consistent with that of the change in the number of Tregs. The survival of middle-aged mice following P.y 17XNL infection was dependent upon the establishment of effective Th1 and Th2 responses and a successful switch between Th1 and Th2 responses, as well as appropriate functioning of Tregs.
Protective immunity against murine malaria infection depends largely on the establishment of effective Th1 immune response during the early stages of infection. Experimental data suggest that the death of Plasmodium yoelii 17XL (P.y 17XL) susceptible BALB/c mice results from the suppression of Th1 immune response mediated by CD4+CD25+Foxp3+regulatory T cells (Tregs). However, the mechanism by which Tregs regulate Th1 immune response is poorly understood. Since immunity is initiated by dendritic cells (DCs), we analysed DC responses to P.y 17XL in control and Treg-depleted BALB/c mice. Myeloid DC proliferation, phenotypic maturation and interleukin-12 (IL-12) production were strongly inhibited in control BALB/c mice. In contrast, plasmacytoid DC proliferation and IL-10 production were strongly enhanced in control BALB/c mice. In-vivo depletion of Tregs resulted in significantly reversed inhibition of DC response, which may contribute to the establishment of Th1 immune response, indicating that Tregs contribute to the suppression of Th1 immune response during malaria. These findings suggest Tregs contribute to prevent Th1 immune response establishment during the early stage of P.y 17XL infection by inhibiting DC response.
The aim of our study was to evaluate the efficacy of FK506, mycophenolate mofetil (MM) and aminoguanidine (AMG) on infiltration of macrophages (MPHs), neutrophils (NPHs) and dendritic cells (DC) into corneal grafts during the early phases after transplantation (Tx). Tx was performed in mice (C57BL/10 to BALB/c). Therapy included FK506 (0.2 mg/kg), MM (30 mg/kg) or AMG (0.1 g/kg), started at the day of Tx and was injected i.p. daily. Corneas were excised on the 3rd and 7th day after Tx. Immunohistological evaluation using antibodies against MPHs, NPHs and DC was performed and corneal grafts were assessed in the periphery and in central part of the cornea separately. On the 3rd day after Tx, a massive infiltration of MPHs and NPHs into corneal grafts was revealed; the DC in filtration was lower in all treated groups. Treatment with FK506 and MM led to a significant reduction of NPHs in the centers of the grafts, but not of MPHs. In contrast, AMG significantly reduced MPHs migration into allografts on the third day after Tx, whereas NPHs infiltration has not been attenuated. However, immunosuppressants had no influence on the infiltration of DC during early phases after Tx., P. Bysterská, P. Svozílková, H. Farghali., and Obsahuje bibliografii a bibliografické odkazy