Víno pijeme nejméně 10 000 let nebo déle, v našem regionu již od doby keltské a germánské. Pokus používat víno k léčbě začíná v dávnověku, avšak teprve v současné době byl prokázán jeho příznivý účinek v prevenci infarktu myokardu, cévní mozkové příhody, diabetes mellitus a hypertenze. Pití velmi dobře působí také v pokročilém věku. Nejlepší účinky má každodenní pití při večeři, u mužů 20–40 g alkoholu, u žen polovina této dávky., We have been drinking wine at least for 10 000 years or longer, in our region already from Celtic and Germanic times. Favorable effects on prevention of myocardial infarction, stroke, diabetes and hypertension were demonstrated recently, following attempts to use alcohol for treatment in ancient times. Favorable effects of wine drinking could be seen also in aging population. The best results for men are reached by daily drinking of 20–40 g alcohol at dinner. A moderate dose for women represents half of the dose for men., Milan Šamánek, Zuzana Urbanová, and Literatura 2
Uric acid is involved in nitrogenous waste in animals, together with ammonia and urea. Uric acid has also antioxidant properties and is a surrogate marker of metabolic syndrome. We observed that the elevated plasma uric acid of high-fat fed mice was normalized by benzylamine treatment. Indeed, benzylamine is the reference substrate of semicarbazide-sensitive amine oxidase (SSAO), an enzyme highly expressed in fat depots and vessels, which generates ammonia when catalysing oxidative deamination. Ammonia interferes with uric acid metabolism/solubility. Our aim was therefore to investigate whether the lowering action of benzylamine on uric acid was related to an improvement of diabetic complications, or was connected with SSAO-dependent ammonia production. First, we observed that benzylamine administration lowered plasma uric acid in diabetic db/db mice while it did not modify uric acid levels in normoglycemic and lean mice. In parallel, benzylamine improved the glycemic control in diabetic but not in normoglycemic mice, while plasma urea remained unaltered. Then, uric acid plasma levels were measured in mice invalidated for AOC3 gene, encoding for SSAO. These mice were unable to oxidize benzylamine but were not diabetic and exhibited unaltered plasma uric levels. Therefore, activated or abolished ammonia production by SSAO was without influence on uric acid in the context of normoglycemia. Our observations confirm that plasma uric acid increases with diabetes and can be normalized when glucose tolerance is improved. They also show that uric acid, a multifunctional metabolite at the crossroads of nitrogen waste and of antioxidant defences, can be influenced by SSAO, in a manner apparently related to changes in glucose homeostasis., C. Carpéné ... [et al.]., and Obsahuje seznam literatury
In the present study we investigated the contribution of ventricular repolarization time (RT) dispersion (the maximal difference in RT) and RT gradients (the differences in RT in apicobasal, anteroposterior and interventricular directions) to T-wave flattening in a setting of experimental diabetes mellitus. In 9 healthy and 11 diabetic (alloxan model) open-chest rabbits, we measured RT in ventricular epicardial electrograms. To specify the contributions of apicobasal, interventricular and anteroposterior RT gradients and RT dispersion to the body surface potentials we determined T-wave voltage differences between modified upper- and lower-chest precordial leads (T-wave amplitude dispersions, TWAD). Expression of RT gradients and RT dispersion in the correspondent TWAD parameters was studied by computer simulations. Diabetic rabbits demonstrated flattened T-waves in precordial leads associated with increased anteroposterior and decreased apicobasal RT gradients (P<0.05) due to RT prolongation at the apex. For diabetics, simulations predicted the preserved T-vector length and altered sagittal and longitudinal TWAD proven by experimental measurements. T-wave flattening in the diabetic rabbits was not due to changes in RT dispersion, but reflected the redistributed ventricular repolarization pattern with prolonged apical repolarization resulting in increased anteroposterior and decreased apicobasal RT gradients.
Baroreflex sensitivity (BRS) is abnormal in the prediabetic state. This study was conducted to determine effects of chronic rosiglitazone (RSG), an insulin sensitizer, on BRS in prediabetic hyperglycemic (PDH) rats induced by nicotinamide and streptozotocin. The fasting and postprandial blood glucose levels were 5.6–6.9 and 7.8–11.0 mmol/l, respectively. Rats were treated with RSG or saline for 12 weeks. BRS response to phenylephrine (PE-BRS) or sodium nitroprusside (NP-BRS) was determined by linear regression method. Cardiac sympathetic and parasympathetic influences were determined by autonomic blockades. In the saline-treated PDH rats, PE-BRS was enhanced early at week 4 and became greater at week 12. Abnormalities in NP-BRS and cardiac autonomic influences were found only after week 12. Four weeks of RSG treatment normalized blood glucose levels but not PE-BRS. All altered cardiovascular variables were completely restored by 12 weeks of RSG treatment. The correlation between BRS and blood glucose levels in salinetreated PDH rats was significant at week 12, but no correlation was found in RSG-treated rats. In conclusion, hyperglycemia, even in the prediabetic state, may play a role in BRS abnormalities. RSG treatment early in the prediabetic state may normalize BRS via cardiac autonomic modulation, besides its antihyperglycemic action., L.-Z. Hong ... [et al.]., and Obsahuje seznam literatury
Nonalcoholic steatohepatitis (NASH) is a current health issue since the disease often leads to hepatocellular carcinoma; however, the pathogenesis of the disease has still not been fully elucidated. In this study, we investigated the pathophysiological changes observed in hepatic lesions in STAM mice, a novel NASH model. STAM mice, high fat-diet (HFD) fed mice, and streptozotocin (STZ) treated mice were prepared, and changes over time, such as biological parameters, mRNA expression, and histopathological findings, were evaluated once animal reached 5, 7, and 10 weeks of age. STZ mice presented with hyperglycemia and an increase in oxidative stress in immunohistochemical analyses of Hexanoyl-lysine: HEL from 5 weeks, with fibrosis in the liver also being observed from 5 weeks. HFD mice presented with hyperinsulinemia from 7 weeks and the slight hepatosteatosis was observed at 5 weeks, with changes significantly increasing until 10 weeks. STAM mice at 10 weeks showed significant hepatic changes, including hepatosteatosis, hypertrophic hepatocytes, and fibrosis, indicating pathological changes associated with NASH. These results suggested that the increase in oxidative stress with hyperglycemia triggered hepatic lesions in STAM mice, and insulin resistance promoted lesion formation with hepatic lipid accumulation. STAM mice may be a useful model for elucidating the pathogenesis of NASH with diabetes.
Reprogramming of non-endocrine pancreatic cells into
insulin-producing cells represents a promising therapeutic approach for the restoration of endogenous insulin production in diabetic patients. In this paper, we report that human organoid cells derived from the pancreatic tissue can be reprogrammed into the insulin-producing cells (IPCs) by the combination of in vitro transcribed modified mRNA encoding transcription factor neurogenin 3 and small molecules modulating the epigenetic state and signalling pathways. Upon the reprogramming, IPCs formed 4.6 ± 1.2 % of the total cells and expressed typical markers (insulin, glucokinase, ABCC8, KCNJ11, SLC2A2, SLC30A8) and transcription factors (PDX1, NEUROD1, MAFA, NKX2.2, NKX6.1, PAX4, PAX6) needed for the proper function of pancreatic β-cells. Additionally, we have revealed a positive effect of ALK5 inhibitor RepSox on the overall reprogramming efficiency. However, the reprogrammed IPCs possessed only a partial insulin-secretory capacity, as they were not able to respond to the changes in the extracellular glucose concentration by increasing insulin secretion. Based on the achieved results we conclude that due to the
incomplete reprogramming, the IPCs have immature character and only partial properties of native human β-cells. and Corresponding author: Tomas Koblas
Glucose tolerance, insulin secretion and in vitro insulin action were examined in streptozotocin-induced diabetic rats following pancreatic islet allotransplantation treated with combination of oral cyclosporine A (10 mg/kg) and hydrocortisone (1.5 mg/kg) intramuscularly. 1400 pure islets from multiple donors were implanted either into the portal vein (n = 10) or under the renal capsule (n=ll). Ten sham-operated non-diabetic animals receiving the same immunosuppressive therapy, 8 healthy animals without any treatment and 10 diabetic animals without immunosuppression following islet transplantation were used as controls. In all transplanted animals blood glucose was normalized by day 3 after transplantation with lower levels in those transplanted intraportally (p<0.05). Non-immunosuppressed animals rejected the graft after 6.5±1.2 days after transplantation, lmmunosuppressed animals in both groups remained normoglycaemic till the end of the experiment on day 28. Oral glucose tolerance tests and insulin levels on days 10 and 28 improved dramatically. No differences in glucose and insulin levels between intraportal and subcapsular groups were found. Post-load glucose levels in immunosuppressed non-transplanted animals were higher on day 28 than before treatment and were also higher than in the healthy non-treated group (p<0.05). In vitro insulin action determined by the incorporation of labelled glucose into adipose tissue was impaired only in animals in which islets were transplanted into the liver (p<0.05 vs other groups). In conclusion, therapy with cyclosporine A and hydrocortisone prevents allogeneic islet rejection in rats during a short-term experiment. Although glucose tolerance is not completely normalized following transplantation, slight impairment is also demonstrable in healthy animals on the same drug therapy.
The excessive production of nitric oxide (NO) and the subsequent increase of local oxidative stress is suggested as one of the pathophysiological mechanisms of streptozotocin-induced diabetes. It was reported that the administration of NO synthase inhibitors partially attenuated the development of streptozotocin-induced diabetes and reduced hyperglycaemia. Here we have studied the influence of methylene blue, which combines the properties of NO synthase inhibitor with antioxidant effects. The experiments were performed on male rats divided into four groups: control, diabetic (single dose of 70 mg of streptozotocin/kg i.p.), methylene blue (50 mg/kg in the food) and diabetic simultaneously fed with methylene blue. After 45 days the experiments were discontinued by decapitation. Serum glycaemia, glycated haemoglobin and oxidative stress parameters (plasma malondialdehyde concentration and erythrocyte superoxide dismutase activity) were significantly higher in the diabetic group. Simultaneous methylene blue administration partially reduced glycaemia and glycated haemoglobin, but did not decrease oxidative stress. We conclude that NO synthase inhibitor methylene blue partially attenuates the development of streptozotocin-induced diabetes in male rats, but does not reduce the development of oxidative stress in the diabetic group.