Age-associated changes in large blood vessels were characterized by increased arterial wall thickness, luminal dilation and impaired endothelial function. But little is known about the effect of age on structural and functional changes in small resistance arteries. The mechanisms underlying age-associated endothelial dysfunction in rat mesenteric resistance arteries were investigated in the present study. Small rat mesenteric arteries were excised and cannulated, and vascular endothelial functions were tested by acetylcholine (ACh). Our experiments showed (1) endotheliumdependent vasorelaxation induced by ACh was reduced in aged mesenteric arteries; (2) blockade of Kca channels markedly reduced the vasodilation in young and adult rats, the resultant reduction in aged rats was much smaller compared with young and adult rats; (3) inhibition of endothelial nitric oxide synthase (NOS) resulted in a significant reduction of vasodilation in young and adult, but there was a smaller reduction in aged rats. The results suggest that (1) endothelial function was impaired in mesenteric arteries of aged rats; (2) both Kca channels and nitric oxide (NO) contribute together to the ACh-induced vasorelaxation in small mesenteric arteries, and (3) both the impairment of Kca channel function and decreased NO account for the age-related endothelial dysfunction., E. Zhou, D. Qing, J. Li., and Obsahuje bibliografii a bibliografické odkazy
Vascular aging is associated with both structural and functional changes that can take place at the level of the endothelium, vascular smooth muscle cells and the extracellular matrix of blood vessels. With regard to the endothelium, reduced vasodilatation in response to agonists occurs in large conduit arteries as well as in resistance arteries with aging. Reviews concerning the different hypotheses that may account for this endothelial dysfunction have pointed out alterations in the equilibrium between endothelium-derived relaxing and constricting factors. Thus, a decreased vasorelaxation due to nitric oxide and, in some arteries, endothelium-derived hyperpolarizing factor as well as an increased vasoconstriction mediated by cyclooxygenase products such as thromboxane A2 are likely to occur in age-induced impairment of endothelial vasodilatation. Furthermore, enhanced oxidative stress plays a critical role in the deleterious effect of aging on the endothelium by means of nitric oxide breakdown due to reactive oxygen species. The relative contribution of the above phenomenon in age-related endothelial dysfunction is highly dependent on the species and type of vascular bed., R. L. Matz, C. Schott, J. C. Stoclet, R. Andriantsitohaina., and Obsahuje bibliografii
There are concerns about altered vascular functions that could play an important role in the pathogenesis and influence the severity of chronic disease, however, increased cardiovascular risk in paediatric cystic fibrosis (CF) has not been yet fully understood. Aim was to analyze vascular disease risk and investigate changes over times in CF and controls. We prospectively enrolled 22 CF subjects (a median age of 16.07 years), and 22 healthy demographically matched controls (a median age of 17.28 years) and determined endothelial function. We utilized a combined diagnostic approach by measuring the plethysmographic Reactive Hyperemia Index (RHI) as the post-to preocclusive endothelium-dependent changes of vascular tone, and biomarkers that are known to be related to endothelial dysfunction (ED): asymmetric dimethyl arginine (ADMA), high-sensitive CRP (hsCRP), VCAM-1 and E-selectin. RHI values were significantly lower in CF young adults (p<0.005). HsCRP (p<0.005), E-selectin (p<0.001) and VCAM-1 (p<0.001) were significantly increased in CF patients since childhood. The findings have provided a detailed account of the ongoing process of microvascular dysfunction with gradual progression with the age of CF patients, making them further at risk of advanced vascular disease. Elevations of biomarkers in CF children with not yet demonstrated RHI changes but with significantly reduced RHI in adulthood and lipid profile changes indicate the possible occurrence of ED with CF-related specific risk factors over time and will enable us to provide the best possible support.
A recently discussed cardiovascular risk factor, asymmetric dimethylarginine (ADMA), is known to act as an endogenous inhibitor of endothelial nitric oxide synthase. The aim of this study was to establish 1) the relationship between ADMA and ultrasonographically or biochemically determined endothelial dysfunction in children, and 2) the effect of folate supplementation on these parameters. The study cohort included 32 children with familial hypercholesterolemia (FH), 30 with diabetes mellitus type 1 (DM1) and 30 age-matched healthy children as the control group. Furthermore, twenty-eight randomly selected FH and DM1 children were re-examined after 3-months supplementation with folic acid. Baseline levels of ADMA and oxidized low density lipoproteins (oxLDL) were significantly higher in FH group than in DM1 and healthy children. Children in DM1 group had significantly lower concentration of homocysteine, but ADMA levels were normal. Folic acid supplementation significantly lowered homocysteine and hsCRP levels in both FH and DM1 group; however, ADMA and oxLDL concentrations remained unaltered. In conclusion, ADMA and oxLDL appear to be associated with endothelial dysfunction in children with FH. Administration of folic acid did not influence these markers in both FH and DM1 children., P. Jehlička ... [et al.]., and Obsahuje seznam literatury
The basis for most acute coronary events is either rupture or fissuring of unstable atherosclerotic plaques with subsequent thrombosis leading to coronary artery occlusion. The development of atherosclerotic plaques takes several decades, but the mechanical features determining its stability and the risk of rupture can change very rapidly depending on a number of internal factors. Unstable plaques have a large lipid core, a thin overlying fibrous cap and an abundance of inflammatory cells. The most important factor determining the plaque stability is the plasma level of atherogenic LDL particles. Increased levels of these particles cause endothelial dysfunction with impaired vasodilatation capacity and prevalence of vasoconstriction, maintain inflammatory infiltration of the plaque, impair the strength of the fibrous cap and facilitate aggregation and coagulation. Effective lowering of plasma cholesterol by pharmacological and non-pharmacological means can revert most of these processes and increase the plaque's mechanical stability within several hours to days. Lipid lowering therapy can therefore decrease the risk of acute coronary events within a very short space of time. Thus a radical decrease in lipid levels, along with modification of other risk factors, may become the cornerstone for treatment of acute coronary syndromes, in addition to being an effective treatment in primary and secondary prevention of coronary heart disease (CHD)., T. Štulc, R. Češka., and Obsahuje bibliografii
The aim of this study was to investigate nitric oxide (NO) production and L-NAME-sensitive component of endothelium-dependent vasorelaxation in adult normotensive Wistar-Kyoto rats (WKY), borderline hypertensive rats (BHR) and spontaneously hypertensive rats (SHR). Blood pressure (BP) of WKY, BHR and SHR (determined by tailcuff) was 111±3, 140±4 and 184±6 mm Hg, respectively. NO synthase activity (determined by conversion of [3H]-Larginine) was significantly higher in the aorta of BHR and SHR vs. WKY and in the left ventricle of SHR vs. both BHR and WKY. L-NAME-sensitive component of endothelium-dependent relaxation was investigated in the preconstricted femoral arteries using the wire myograph during isometric conditions as a difference between acetylcholine-induced relaxation before and after acute NG-nitro-L-arginine methyl ester pre-treatment (L-NAME, 10-5 mol/l). Acetylcholineinduced vasorelaxation of SHR was significantly greater than that in WKY. L-NAME-sensitive component of vasorelaxation in WKY, BHR and SHR was 20±3 %, 29±4 % (p<0.05 vs. WKY) and 37±3 % (p<0.05 vs. BHR), respectively. There was a significant positive correlation between BP and L-NAME-sensitive component of relaxation of the femoral artery. In conclusion, results suggest the absence of endothelial dysfunction in the femoral artery of adult borderline and spontaneously hypertensive rats and gradual elevation of L-NAME-sensitive component of vasorelaxation with increasing blood pressure., A. Púzserová, Z. Csizmadiová, I. Bernátová., and Obsahuje bibliografii
Thiazolidinediones are insulin-sensitizing drugs acting through peroxisome proliferator- activated receptor (PPAR)-γ. The aim of our study was to evaluate the effect of 5-month treatment with PPAR-γ agonist – rosiglitazone (4 mg/day), on the circulating markers of endothelial dysfunction and to evaluate the role of changes in endocrine function of adipose tissue in this process. Biochemical and metabolic parameters, circulating adiponectin, resistin, ICAM-1, VCAM-1, E-selectin, P-selectin, PAI-1, myeloperoxidase (MPO), and matrix metalloproteinase-9 (MMP-9) concentrations were assessed in 10 women with type 2 DM before and after rosiglitazone treatment and in a control group of healthy women. At baseline, diabetic group had significantly higher serum concentrations of glucose, glycated hemoglobin, V-CAM and PAI-1 compared to control group. Adiponectin levels tended to be lower in diabetic group, while resistin concentrations did not differ from control group. Rosiglitazone treatment improved diabetes compensation, significantly reduced VCAM-1, PAI-1 and E-selectin concentrations and increased adiponectin levels, while it did not affect serum resistin concentrations. Adiponectin concentrations at baseline were inversely related to E-selectin and MPO levels, this correlation disappeared after rosiglitazone treatment. We conclude that 5-month rosiglitazone treatment significantly reduced several markers of endothelial dysfunction. This effect could be at least in part attributable to marked increase of circulating adiponectin levels., R. Doležalová, M. M. Haluzík, L. Bošanská, Z. Lacinová, Z. Kasalová, T. Štulc, M. Haluzík., and Obsahuje bibliografii a bibliografické odkazy
Atorvastatin and insulin have distinct mechanisms of action to improve endothelial function. Therefore, we hypothesized that atorvastatin and insulin therapies alone or in combination could have beneficial effects on en dothelium-dependent vascular reactivity, oxidative stress, inflammation and metabolic parameters in Goto-Kakizaki (GK) rats, a model of type 2 diabetes fed with atherogenic diet (GKAD). In parallel with the development of diabetes and lipid profile, the generation of oxidative stress was determined by measurement of lipid peroxides and oxidized proteins and the presence of inflammation was evaluated by assessing C-reactive protein (CRP). Additionally, endothe lial dependent and independent vascular sensitivity to acetylcholine and sodium nitroprusside were evaluated. GKAD showed increased carbonyl stress, inflammation, fasting glycemia, dyslipidemia and endothelial dysfunction when compared to control GK rats. Noteworthy, supplementation with insulin deteriorated endothelial dysfunction while atorvastatin induced an improvement. Atorvastatin and insulin therapies in combination improved metabolic parameters, CRP levels and insulin resistance indexes and ameliorated endothelial dysfunction in GKAD rats while they were unable to reduce urinary 8-isoprostranes and plasma carbonyl compounds. The therapeutic association of atorvastatin and insulin provided a better metabolic control with a reduction in endothelial dysfunction in GKAD rats by a mechanism that involves an improvement in systemic inflammation., C. M. Sena ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Because insulin resistance is inevitably associated with cardiovascular complications, there is a need to further investigate the potential involvement of oxidative stress and the cyclo-oxygenase (COX) pathway in the vascular modifications associated to this pathological context. Endothelial function was evaluated in control and fructose-fed rats (FFR) by i) in vitro study of endothelium-dependent an d-independent relaxations of aortic rings, and ii) in vivo telemetric evaluation of pressor response to norepinephrine. After 9 weeks of diet, FFR displayed hypertriglyceridemia, hyperinsulin emia and exaggerated response to glucose overload. Aortic rings from control rats and FFR exhibited comparable endothelium-dependent relaxations to Ach. In the presence of indomethacin , relaxations were significantly reduced. FFR showed exaggerated pressor responses to norepinephrine that were abolis hed with indomethacin. Urinary nitrites/nitrates, 8-isoprostanes and thromboxane B2 excretion levels were markedly enhanced in FFR, whereas the plasma levels of 6-keto prostaglandin F1α were unchanged. In conclusion, fructose overload in rats induced hypertriglyceridemia and insulin resistance associated with an enhanced oxidative stress. This was associated with COX pathway dysregulation which could be one of the contributors to subsequent vascular dysfunction. Consequently, reduction of oxidative stress and regulation of the COX pathway could represent new potential therapeutic strategies to limit vascular dysfunction and subsequent cardiovascular complications associated with insulin resistance., A. Outdot ... [et al.]., and Obsahuje seznam literatury
As a novel gasotrans mitter, h ydrogen sulfide (H 2 S) has vasodilating and antihypertensive effects in cardiovascular system. Thus, we hypothesized that H 2 S might have beneficial effects on thoracic endothelial function in two -kidney one -clip (2K1C) rats, a model of renovascular hypertension. Sodium hydrosulfide (NaHS , 56 μmol/kg /day ) was administrated intra - peritoneally from the third day after the 2K1C operation. Along with the development of hypertension, t he systolic blood pressure (SBP) was measured before the operation and each week thereafter. The oxidative stress wa s determined by measurement of malondialdehyde (MDA) concentration, superoxide dismutase (SOD) activity and protein expression of oxidative stress -related proteins (AT 1 R, NADPH oxidase subunits). Acetylcholine (ACh) -induced vasorelaxation and angiotensin I I (Ang II) -induced vasocontraction were performed on isolated thoracic aorta. The SBP w as significantly increased from the first week after operation , and was lowered by NaHS. NaHS supplementation ameliorated endothelial dysfunction. The protein expression of oxidative stress -related proteins were downregulated, while SOD activity upregulated. In conclusion, improvement of endothelial function is involved in the antihypertensive mechanism of H 2 S. The protective effect of H 2 S is attributable to suppression o f vascular oxidative stress that involves inhibition of Ang II -AT 1 R action, downregulation of oxidases, as well as upregulation of antioxidant enzyme., H. Xue, S. Zhou, L. Xiao, Q. Guo, S. Liu, Y. Wu., and Obsahuje bibliografii