The aim of the experiment was to investigate the mechanism of harmful alloxan action in vivo. 75 mg/kg b.w. of this diabetogenic agent were administered to fasting rats. Two minutes later the animals were decapitated. It was observed that alloxan caused a distinct rise in blood insulin and glucose levels with a concomitant drop of free fatty acids. The amount of sulfhydryl groups in the liver of alloxan-treated rats was decreased and glutathione peroxidase activity was substantially higher. These results indicate that some changes observed in alloxan-induced diabetes can not only be the consequence of B cells damage by alloxan but may also be the result of its direct influence on other tissues. It was also observed that glucose given 20 min before alloxan injection only partially protected against the deleterious effects of alloxan.
The consequences of increased oxidative stress, measured as the level of malondialdehyde (MDA) during ischemia/reperfusion, were studied in 48 patients in the acute phase of myocardial infarction (AMI) and a control group (21 blood donors). The serum levels of a-tocopherol and b-carotene were followed. Immediately after the treatment onset the level of a-tocopherol started to decrease, reaching a plateau after 24 h. The consumption of b-carotene was delayed by 90 min. Steady decline was detected during the whole time interval studied (48 h). Glutathione peroxidase (GPx) activity, as a representative of antioxidant enzymes, was estimated in whole blood. The influx of oxygenated blood was accompanied by a stimulation of GPx activity, which reached its maximum at the time of completed reperfusion. When comparing the AMI patients with the control group, the levels of MDA were found significantly increased, which indicates that oxidative stress is already increased during ischemia. Lower antioxidant levels found in the patients might either already be the result of vitamin consumption during ischemia or be a manifestation of their susceptibility to AMI. Monitored consumption of a-tocopherol and b-carotene during reperfusion indicated that in the case of patients, whose level of antioxidant vitamins is below the threshold limit, a further substantial decrease of antioxidant vitamins during reperfusion could enhance the oxidative damage of the myocardium., V. Mužáková, R. Kanďár, P. Vojtíšek, J. Skalický, R. Vaňková, A. Čegan, Z. Červinková., and Obsahuje bibliografii
The blood stream is affected by viscosity and many other haemorheological factors such as lipid peroxidation in the plasma and red blood cells. The aim of this study was to investigate the changes of haemorheological parameters after submaximal exercise in trained and untrained subjects. The results indicated that heart rate, lymphocyte count, erythrocyte deformability, plasma lipid peroxide levels and erythrocyte glutathione peroxidase activity are increased after submaximal exercise.
The intracellular levels of antioxidant and free radical scavenging enzymes are gradually altered during the aging process. An age-dependent increase of oxidative stress occurring throughout the lifetime is hypothesized to be the major cause of aging. The current study examined the effects of L-malate on oxidative stress and antioxidative defenses in the liver and heart of aged rats. Sprague-Dawley male rats were randomly divided into four groups, each group consisting of 6 animals. Group Ia and Group IIa were young and aged control rats. Group Ib and Group IIb were young and aged rats treated with L-malate (210 mg/kg body weight per day). L-malate was orally administrated via intragastric canula for 30 days, then the rats were sacrificed and the liver and heart were removed to determine the oxidant production, lipid peroxidation and antioxidative defenses of young and aged rats. Dietary L-malate reduced the accumulation of reactive oxygen species (ROS) and significantly decreased the level of lipid peroxidation in the liver and heart of the aged rats. Accordingly, L-malate was found to enhance the antioxidative defense system with an increased activity of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) and increased glutathione (GSH) levels in the liver of aged rats, a phenomenon not observed in the heart of aged rats. Our data indicate that oxidative stress was reversed and the antioxidative defense system was strengthened by dietary supplementation with L-malate., J.-L. Wu, Q.-P. Wu, X.-F. Yang, M.-K. Wei, J.-M. Zhang, Q. Huang, X.-Y. Zhou., and Obsahuje bibliografii a bibliografické odkazy
The study of ischemia/reperfusion injury included 25 patients in the acute phase of myocardial infarction (19 perfused, 6 remained non-reperfused as evaluated according to the time course of creatine kinase and CK-MB isoenzyme activity) and a control group (21 blood donors). Plasma level of malondialdehyde was followed as a marker of oxidative stress. Shortly after reperfusion (within 90 min), a transient increase of malondialdehyde concentration was detected. The return to the baseline level was achieved 6 h after the onset of therapy. The activity of a free radical scavenger enzyme, plasma glutathione peroxidase (GPx), reached its maximum 90 min after the onset of treatment and returned to the initial value after 18 h. The specificity of the GPx response was confirmed by comparing with both non-reperfused patients and the control group, where no significant increase was detected. The erythrocyte Cu,Zn-superoxide dismutase (SOD) did not exhibit significant changes during the interval studied in perfused patients, probably due to the stability of erythrocyte metabolism. In non-reperfused patients, a decrease of SOD was found during prolonged hypoxia. These results help to elucidate the mechanisms of fast activation of plasma antioxidant system during the reperfusion after myocardial infarction., V. Mužáková, R. Kanďár, P. Vojtíšek, J. Skalický, Z. Červinková., and Obsahuje bibliografii
An oxidant/antioxidant imbalance is thought to play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). We hypothesized that antioxidant capacity reflected by erythrocyte glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) activities, and serum levels of the lipid peroxidation product malondialdehyde (MDA), may be related to the severity of obstructive lung impairment in patients with COPD. Erythrocyte GPx, SOD and CAT activities, and serum levels of MDA were measured in 79 consecutive patients with stable COPD. Pulmonary functional tests were assessed by bodyplethysmography. Moderate COPD (FEV1 50-80 %) was present in 23, and severe COPD (FEV1 < 50 %) in 56 patients. Erythrocyte GPx activity was significantly lower, and serum MDA levels were significantly higher in patients with severe COPD compared to patients with moderate COPD (GPx: 43.1±1.5 vs. 47.7±2.9 U/gHb, p<0.05, MDA: 2.4±0.1 vs. 2.1±0.1 nmol/ml, p<0.05). Linear regression analysis revealed a significant direct relationship between FEV1 and erythrocyte GPx activity (r = 0.234, p<0.05), and a significant inverse relationship between FEV1 and serum MDA levels (r = -0.239, p<0.05). However, no differences were observed in the erythrocyte SOD and CAT activities between the two groups of patients with different severity of COPD. Findings of the present study suggest that antioxidant capacity reflected by erythrocyte GPx activity and serum levels of the lipid peroxidation product MDA are linked to the severity of COPD., Z. Kluchová, D. Petrášová, P. Joppa, Z. Dorková, R. Tkáčová., and Obsahuje bibliografii a bibliografické odkazy