In the seventies of the past century ballistocardiography had been thought to be obsolete in cardiology for impossibility of objective calibration. In the present work the quantitative ballistocardiography (Q-BCG) for measurement of systolic force (F) and minute cardiac force (MF) in sitting subject was described. The new principle of piezoelectric transducer enabled to register the force caused by the heart and blood movement, which was not measured before. The calibration proved that the action of the force on the transducer was expressed quantitatively without the amplitude-, time-, and phase deformation. The close relationship of skeletal muscle force and F was proved. The F and MF changed under different physiological conditions (age, partial pressure of oxygen, body weight, skeletal muscle force). It was shown that the systolic force (F) and minute cardiac force (MF) are the physiological parameters neurohumorally regulated similarly as the heart rate or systolic volume., Z. M. Trefný ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
We investigated the effect of isoprénaline (IPRO), a /J-mimetic catecholamine, on incorporation of (32P)Pi into phospholipids of the mouse left ventricle in uiuo. All experimental groups of male mice received an injection of (32p)pi ^250 MBq x kg“1 b.w.) intraperitoneally two hours prior to sacrifice. A single dose of IPRO (5 mg x kg-1 b.w.) was injected one hour before killing. IPRO increased the specific radioactivity of phosphatidylcholine (PC) by a factor of 1.8, diphosphatidylglycerol (DPG) 2.1, sphingomyelin (SM) 3.5, phosphatidylinositol (PI) 1.7, phosphatidylserine (PS) 1.7, phosphatidylglycerol (PG) 1.7, phosphatidic acid (PA) 2.0 compared to control values. On the other hand, IPRO is also known to stimulate phospholipid degradation by activation of phospholipase A2. That is why we used mepacrine (50 mg x kg“1 b.w.), a phospholipase inhibitor, to find a possible link between biosynthesis and degradation of phospholipids. Pretreatment with mepacrine two hours prior to sacrifice suppressed IPRO stimulated incorporation of (32P)Pi into phospholipids nearly to control levels. Mepacrine itself did not significantly influence the specific radioactivity of phospholipids. We conclude that phospholipase A2 inhibitor, mepacrine, is able to prevent IPRO-stimulated ¡corporation into phospholipids, suggesting a feedback relation between their biosynthesis and degradation in the myocardium.
The present study was focused on regulatory role of nitric oxide on functional properties of the cardiac Na, K-ATPase in three various animal models of hypertension: spontaneously hypertensive male rats (SHR) with increased activity of nitric oxide synthase (NOS) by 60 % (Sh1), SHR with decreased activity of NOS by 40 % (Sh2) and rats with hypertension induced by L-NAME (40 mg/kg/day) with depressed activity of NOS by 72 % (LN). Studying the utilization of energy substrate we observed higher Na, K-ATPase activity in the whole concentration range of ATP in Sh1 and decreased activity in Sh2 and LN. Evaluation of kinetic parameters revealed an increase of Vmax value by 37 % in Sh1 and decrease by 30 % in Sh2 and 17 % in LN. The KM value remained unchanged in Sh2 and LN, but was lower by 38 % in Sh1 indicating increased affinity of the ATP binding site, as compared to controls. During the activation with Na+ we observed increased Vmax by 64 % and increased KNa by 106 % in Sh1. In Sh2 we found decreased Vmax by 40 % and increased KNa by 38 %. In LN, the enzyme showed unchanged Vmax with increased KNa by 50 %. The above data indicate a positive role of increased activity of NOS in improved utilization of ATP as well as enhanced binding of Na+ by the cardiac Na, K-ATPase., J. Vlkovičová, V. Javorková, L. Mézešová, O. Pecháňová, N. Vrbjar., and Obsahuje bibliografii a bibliografické odkazy
To investigate the effect of light cue on the resetting of the peripheral clocks, we examined the resetting processes of clock genes (Per1, Per2, Bmal1, Cry1, Dec1, and Rev-erbα) in the liver and heart of rats after the feeding and light-dark (LD) reversal via a 24-h light period transition. The liver clock was reset quickly within 3 days, while the heart clock needed a longer time course of 5-7 days to be completely re-entrained. Moreover, the reentrainment of Per1 and Per2 in the liver clock was more rapid than that of the other four clock genes, suggesting the important role of these two clock genes in initiating the circadian resetting of the hepatic clock. However, the resetting rates of these two clock genes were as similar as the others in the heart clock. Therefore, the resetting mechanisms underlining these two peripheral clocks may be totally distinct. Furthermore, the reentrainment of the liver and heart clocks were relatively lengthened after the feeding and LD reversal via a light period transition compared to a dark period transition, suggesting a simultaneous shift of feeding schedule and the LD cycle may facilitate the circadian resetting in rats., T. Wu ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
In the myocardium, the sarcoplasmic reticulum (SR) plays an essential role in the regulation of cytosolic free Ca2 + ion concentration and, hence, in the contraction-relaxation cycle. The aim of this review is to summarize the role of the SR, particularly the main SR Ca2+ transport proteins, Ca2+-ATPase pump and Ca2+ release channel (ryanodine receptor), in contractile impairment during ischaemia and reperfusion. As suggested by most studies, SR dysfunction may contribute to contractile failure during ischaemia. However, SR function is largely restored during reperfusion and minor changes are unlikely to explain the severe postischaemic contractile dysfunction.
Our previous preliminary results pointed to possible seasonal variations in Mg2+-ATPase activity of rat heart mitochondria (MIT). It is not too surprising since seasonal differences were already reported in myocardial function, metabolism and ultrastructure of the intact as well as hemodynamically overloaded rabbit hearts and also in other tissues. The present study is aimed to elucidate whether seasonal differences observed in rat heart MIT Mg2+-ATPase activity will be accompanied with changes in membrane fluidity and in the content of conjugated dienes (CD) in the lipid bilayers of MIT membranes as well as whether the above seasonal differences will also be present in the diabetic heart. Our results revealed that values of Mg2+-ATPase activity in the winter/spring-period (W/S-P) exceeded significantly (p<0.05-0.001) those in the summer/autumn-period (S/A-P). Similar trend was also observed in hearts of animals with acute (8 days) streptozotocin diabetes. With the exception of values of CD in the S/A-P, all values of Mg2+-ATPase activities, membrane fluidity and CD concentrations in diabetic hearts exceeded those observed in the healthy hearts. Our results indicate that seasonal differences may play a decisive role in the evaluation of properties and function of rat heart MIT., J. Mujkošová, M. Ferko, P. Humeník, I. Waczulíková, A. Ziegelhöffer., and Obsahuje bibliografii a bibliografické odkazy
It is known that hypertension is accompanied by increased [Na+]i. The functional properties of Na,K-ATPase, which transports the Na+ out and K+ into myocardial cells during the relaxation phase, were investigated in the left ventricle (LV), septum (SV) and the right ventricle (RV) of anesthetized dogs with moderate acute blood pressure elevation elicited by short-term (4-hour) NO synthase inhibition. The NO-insufficiency was induced by administration of an L-arginine analogue, the NG-nitro-L-arginine methyl ester (L-NAME). Concerning the function of Na,K-ATPase under the conditions of lowered NO synthesis, we focused our attention to the binding of Na+ to the enzyme molecule. Activation of the enzyme by increasing Na+ concentrations revealed significant changes in both the maximal velocity (Vmax) and the affinity for Na+ (KNa) in all investigated heart sections. The Vmax increased by 27 % in LV, by 87 % in SV and by 58 % in RV. The KNa value increased by 86 % in LV, by 105 % in SV and by 93% in RV, indicating an apparent decrease in the sensitivity of the Na+-binding site in the Na,K-ATPase molecule. This apparently decreased pump affinity for Na+ together with the increase of Vmax suggest that, during the short-term inhibition of NO synthesis, the Na,K-ATPase is capable of extruding the excessive Na+ from the myocardial cells more effectively at higher [Na+]i as compared to the Na,K-ATPase of control animals., N. Vrbjar, M. Strnisková, O. Pecháňová, M. Gerová., and Obsahuje bibliografii
a1_Statins, the inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are most frequently used drugs in the prevention of coronary artery disease due to their cholesterol- lowering activity. However, it is not exactly known whether these effects of statins or those independent of cholesterol decrease account for the protection ag ainst myocardial ischemia- reperfusion (I/R) injury. In this study, we investigated the effect of 5-day treatment with simvastatin (10 mg/kg) in Langendorff- perfused hearts of healthy control (C) and diabetic- hypercholesterolemic (D-H; strept ozotocin + high fat-cholesterol diet, 5 days) rats subjected to 30-min global ischemia followed by 40-min reperfusion for the examination of postischemic contractile dysfunction and reperfusion-induced ventricular arrhythmias or to 30-min (left anterior descending) coronary artery occlusion and 2-h reperfusion for the infarct size determination (IS; tetrazolium stai ning). Postischemic recovery of left ventricular developed pressu re (LVDP) in animals with D-H was improved by simvastatin therapy (62.7±18.2 % of preischemic values vs. 30.3±5.7 % in the untreated D-H; P<0.05), similar to the values in the simvastatin-treated C group, which were 2.5-fold higher than those in the untreated C group. No ventricular fibrillation occurred in the simvastatin-treated C and D-H animals during reperf usion. Likewise, simvastatin shortened the duration of ventri cular tachycardia (10.2±8.1 s and 57.8±29.3 s in C and D-H vs. 143.6±28.6 s and 159.3±44.3 s in untreated C and D-H, respectively, both P<0.05). The decreased arrhythmogenesis in the simvastatin-treated groups correlated with the limitation of IS (in % of risk area) by 66 % and 62 % in C and D-H groups, respectively. However, simvastatin treatment decreased plasma cholesterol levels neither in the D-H animals nor in C., a2_The results indicate that other effects of statins (independent of cholesterol lowering) are involved in the improvement of contractile recovery and attenuation of lethal I/R injury in both, healthy and diseased individuals., A. Adameová, A. Harčárová, J. Matejíková, D. Pancza, M. Kuželová, S. Čarnická, P. Švec, M. Barteková, J. Styk, T. Ravingerová., and Obsahuje bibliografii
Inhalational anesthetic-induced preconditioning (APC) has been shown to reduce infarct size and attenuate contractile dysfunction caused by myocardial ischemia. Only a few studies have reported the effects of APC on arrhythmias during myocardial ischemia-reperfusion injury, focusing exclusively on reperfusion. Accordingly, the ai m of the present study was to examine the influence of APC on ventricular arrhythmias evoked by regional no-flow ischemia. APC was induced in adult male Wistar rats by 12-min exposures to two different concentrations (0.5 and 1.0 MAC) of isoflurane followed by 30-min wash-out periods. Ventricular arrhythmias were assessed in the isolated perfused hearts during a 45- min regional ischemia and a subsequent 15-min reperfusion. Myocardial infarct size was determined after an additional 45 min of reperfusion. The incidence, severity and duration of ventricular arrhythmias during ischemia were markedly reduced by APC. The higher concentration of isoflurane had a larger effect on the incidence of ventricular fibrillation than the lower concentration. The incidence of ventricular tachycardia and reversible ventricular fibrillation during reperfusion was also significantly reduced by APC; the same was true for myocardial infarct size. In conclusion, we have shown that preconditioning with isoflurane confers profound protection against myocardial is chemia- and reperfusion-induced arrhythmias and lethal myocardial injury., H. Říha ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The study has been designed to characterize protein systems involved in the responses of rat hearts to chronic doxorubicin (DOX) treatment. We investigated the influence of DOX on cardiac function, mitogen-activated protein kinases (MAPKs) and heat stress proteins (HSPs). Doxorubicin was administered to rats by intraperitoneal injections over a period of 6 weeks. In control and DOX-treated hearts exposed to 20 min global ischemia and 40 min reperfusion the recovery of contractile function after ischemia/reperfusion (I/R) was determined. The levels and phosphorylation state of proteins in tissue samples were analyzed using specific antibodies. We found an activation of extracellular signal-regulated kinases (ERKs) in rat hearts exposed to DOX treatment and better recovery of contractile function after I/R. Analysis of HSPs showed that DOX induced up-regulation of the levels of HSP60 and down-regulation of HSP70 levels. The levels and/or specific phosphorylation of other studied proteins (p38-MAPK, HSP27, HSP90) were not in fluenced by DOX. The results point to the possible role of ERKs and some HSPs in mechanisms underlying the response of rat hearts to chronic DOX treatment., P. Šimončíková, T. Ravingerová, M. Barančík., and Obsahuje bibliografii a bibliografické odkazy