We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak σ-additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a σ-additive term-we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures., Dariusz Idczak., and Obsahuje bibliografii
A real matrix A is a G-matrix if A is nonsingular and there exist nonsingular diagonal matrices D_{1} and D_{2} such that A^{-T} = D_{1}AD_{2}, where A^{-T} denotes the transpose of the inverse of A. Denote by J = diag(±1) a diagonal (signature) matrix, each of whose diagonal entries is +1 or −1. A nonsingular real matrix Q is called J-orthogonal if Q^{T} JQ = J. Many connections are established between these matrices. In particular, a matrix A is a G-matrix if and only if A is diagonally (with positive diagonals) equivalent to a column permutation of a J-orthogonal matrix. An investigation into the sign patterns of the J-orthogonal matrices is initiated. It is observed that the sign patterns of the G-matrices are exactly the column permutations of the sign patterns of the J-orthogonal matrices. Some interesting constructions of certain J-orthogonal matrices are exhibited. It is shown that every symmetric staircase sign pattern matrix allows a J-orthogonal matrix. Sign potentially J-orthogonal conditions are also considered. Some examples and open questions are provided., Frank J. Hall, Miroslav Rozložník., and Obsahuje seznam literatury
We derive two identities for multiple basic hyper-geometric series associated with the unitary U(n+1) group. In order to get the two identities, we first present two known q-exponential operator identities which were established in our earlier paper. From the two identities and combining them with the two U(n + 1) q-Chu-Vandermonde summations established by Milne, we arrive at our results. Using the identities obtained in this paper, we give two interesting identities involving binomial coefficients. In addition, we also derive two nontrivial summation equations from the two multiple extensions., Jian-Ping Fang., and Obsahuje seznam literatury
In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point x in a metric measure space (X,d,μ) is called a generalized Lebesgue point of a measurable function f if the medians of f over the balls B(x,r) converge to f(x) when r converges to 0. We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show that a function f\in M{s,p}(X),0<s<1,0<p<1, where X is a doubling metric measure space, has generalized Lebesgue points outside a set of Hh-Hausdorff measure zero for a suitable gauge function h., Nijjwal Karak., and Obsahuje bibliografii
We study classifying problems of real hypersurfaces in a complex two-plane Grassmannian G_{2} (\mathbb{C}^{m+2}). In relation to the generalized Tanaka-Webster connection, we consider that the generalized Tanaka-Webster derivative of the normal Jacobi operator coincides with the covariant derivative. In this case, we prove complete classifications for real hypersurfaces in G_{2} (\mathbb{C}^{m+2})satisfying such conditions., Eunmi Pak, Juan de Dios Pérez, Young Jin Suh., and Obsahuje seznam literatury