Males of the nematode Philometra lateolabracis (Yamaguti, 1935), the type species of the genus Philometra Costa, 1845, were discovered for the first time in gonads of its type host, the Japanese seaperch, Lateolabrax japonicus (Cuvier). Morphological comparisons carried out between the collected male and female P. lateolabracis with the male and female philometrid nematodes previously reported as P. lateolabracis infecting chicken grunt, Parapristipoma trilineatum (Thunberg), and red sea bream, Pagrus major (Temminck et Schlegel), revealed that the latter represent two new species, Philometra isaki sp. n. and Philometra madai sp. n., respectively. Molecular comparison of ITS2 rDNA between P. lateolabracis and P. madai supported the morphological conclusion that the two nematodes obtained from different fish species should be assigned to different species.
The taxonomy of European Eristalinus syrphid flies is reviewed. New data on their life histories, biological notes and a key to species using pupal characters are provided. The larvae and puparia of Eristalinus taeniops (Wiedemann, 1818) and Eristalinus megacephalus (Rossi, 1794) are described for the first time, including new morphological characters of the thoracic respiratory process of all species. The morphology of the male genitalia of E. megacephalus is described and compared with that of E. taeniops.
The results of our morphological studies of the male genitalia and molecular data (mitochondrial COI and nuclear 28S rDNA) do not support the traditional adult classification based on the patterning on the eyes (fasciate vs punctate). We present a phylogeny of the species based on molecular data. The molecular and morphological data indicate that the relationship between some species with punctate eyes and those with fasciate eyes may be closer than with other species with punctate eyes. Moreover the results of the molecular studies support two clades, which does not accord with the traditional arrangement of this group of Syrphidae.
Accordingly we propose that the characters of male genitalia stated by Kanervo in 1938 (but subsequently largely ignored) for arranging the European species of the Eristalinus-Eristalodes-Lathyrophthalmus complex, are suitable for classifying these species.
The intra- and interspecific variability in the West Palaearctic tibialis-group species of the subgenus Pandasyopthalmus (Diptera: Syrphidae: Paragus) was analysed. Novel immature and molecular characters were studied and the traditionally used adult characters reviewed with the aim of establishing the status of the most widespread taxa of the tibialis-group in the Palaearctic region. Moreover, a review of the morphology of the larvae of the subgenus Pandasyopthalmus is also presented and includes the first description of the chaetotaxy of the larval head of Syrphidae. The larval morphology showed a continuum between two extremes. There is intraspecific variability in the male genitalia characters typically used for diagnostic species identification in this group. Molecular characters of the mitochondrial cytochrome c-oxidase subunit I (COI) was invariant for the West Palaearctic Pandasyopthalmus taxa analysed. Despite the fact that no great differences were found when compared with Afrotropical tibialis-group individuals (uncorrected pairwise divergence 0.17-0.35%), the divergences of the West Palaearctic vs. Nearctic and Austral-Oriental tibialis-group taxa varied between 1.15-2.75% (uncorrected pairwise divergence). Molecular characters of the nuclear ribosomal internal transcribed spacer region (ITS2) revealed several molecular haplotypes of a dinucleotide repeat that was not constrained to morphospecies or to populations of the same geographic origin. The closely related and morphologically similar species of the tibialis-group known from the West Palaearctic region are separable in most cases only by the shape and size of male postgonites. The results of this study support the presence of a single polymorphic taxon in the West Palaearctic region (or a very recent origin of the taxa studied). Moreover larval morphology and the lack of a clear relation between ITS2 haplotypes and the geographic distribution or adult morphology, support the taxonomic implications of barcode taxonomy based on mitochondrial DNA for this species-group of Syrphidae.
The Capsalidae are monogeneans parasitizing ''skin'', fins and gills of marine fishes. Some capsalids are pathogenic to cultivated fish and a few have caused epizootic events. It is a cosmopolitan family with broad host associations (elasmobranchs and teleosts, including sturgeons). Approximately 200 capsalid species are placed in nine subfamilies and 44-46 genera, some of which are well known (Benedenia, Capsala, Entobdella, Neobenedenia). Sturgeons host two capsalid species (Nitzschiinae) and 15 species in five genera are reliably reported from elasmobranchs. The combination of ancient (shark, ray, sturgeon) and modern (teleost) host fish lineages indicates that capsalid evolution is likely a blend of coevolution and host-switching, but a family phylogeny has been lacking due to deficient knowledge about homologies. The current phenetic subfamilial classification is discussed in detail using a preliminary phylogeny generated from large subunit ribosomal DNA sequence data from representatives of five subfamilies. Monophyly of the Capsalidae is supported by possession of accessory sclerites. Hypotheses are proposed for the possible radiation of capsalids. A suggestion that Neobenedenia melleni, a pathogenic species atypical due to its broad host-specificity (>100 host teleost species from >30 families in five orders), may be a complex of species is supported from genetic evidence. This may explain peculiarities in biology, taxonomy, host associations and geographic distribution of N. 'melleni' and has implications for fish health. Holistic studies using live and preserved larval and adult capsalid specimens and material for genetic analysis are emphasised to further determine identity, phylogeny and details of biology, especially for pathogenic species.
Adults of two coniopterygid species, Aleuropteryx juniperi Ohm, 1968 (Aleuropteryginae) and Semidalis aleyrodiformis (Stephens, 1836) (Coniopteryginae), were studied using scanning electron microscopy. Interspecific differences in the ultrastructure of the integument of all the major parts of the body were identified and described, and the functional and phylogenetic implications of the differences discussed. Additionally, the enlarged terminal segment of the labial palps of the Coniopterygidae and the Sisyridae, which up to now has been used as an argument for a sister-group relationship between these two families, was subjected to a thorough comparison. The very different morphology makes independent enlargement of the terminal palpal segment in both families plausible. This finding is congruent with the earlier hypothesis of a sister-group relationship between Coniopterygidae and the dilarid clade, which was proposed on the basis of molecular data, larval morphology and male genital sclerites. Finally, a new classification of the coniopterygid subfamilies is presented based on characters of the larval head (prominence of the ocular region, relative length of sucking stylets). The following relationship is hypothesized: (Brucheiserinae + Coniopteryginae) + Aleuropteryginae, and the implications of this hypothesis for the phylogenetic interpretation of the ultrastructural differences that we found are discussed: (1) The wax glands, as well as plicatures, are interpreted as belonging to the ground pattern of the family Coniopterygidae, and (2) the wax glands are considered to have been reduced in Brucheiserinae and the plicatures in Coniopteryginae. A distinct (though reduced) spiraculum 8 was detected in Semidalis aleyrodiformis; as a consequence the hypothesis that the loss of spiraculum 8 is an autapomorphy of Coniopteryginae is refuted.
The type species of Pseudopsila Johnson, P. fallax (Loew), and two related species are found to belong in Psila s. str., and Pseudopsila is thus synonymized with Psila Meigen. The remaining species formerly included in Pseudopsila form a monophyletic group here described as Xenopsila Buck subgen. n. [i.e., Psila (Xenopsila) collaris Loew comb. n., P. (X.) bivittata Loew comb. n., P. (X.) lateralis Loew comb. n., P. (X.) arbustorum Shatalkin comb. n., P. (X.) nemoralis Shatalkin comb. n., P. (X.) tetrachaeta (Shatalkin) comb. n., P. (X.) maculipennis (Frey) comb. n., P. (X.) nigricollis (Frey) comb. n., P. (X.) nigrohumera (Wang & Yang) comb. n.]. A key to the Nearctic species of Xenopsila and the Psila fallax-group is provided. The placement of Xenopsila in Psila s. l. is confirmed by newly recognised synapomorphies of the egg stage. The somewhat questionable monophyly of Psila s. l. is confirmed based on these new synapomorphies, thereby slightly expanding its taxonomic limits to also include Asiopsila Shatalkin. The morphology of the male genitalia of Xenopsila is discussed in detail, clarifying confused homologies and character polarities in the hypandrial complex. Evolutionary trends in the development of the hypandrium in the subfamily Psilinae are discussed.
Specimens of Neoechinorhynchus (Neoechinorhynchus) poonchensis sp. n. are described from Schizothorax richardsonii (Gray) in the Poonch River, Jammu and Kashmir. Specimens are thick-walled with dissimilar dorsal and ventral para-receptacle structures, anteriorly manubriated hooks, two giant nuclei in each lemniscus and many subcutaneousy. The lemnisci barely overlap the larger anterior testis, the cement gland has eight giant nuclei, and the seminal vesicle is large with thin walls. The vagina is unremarkable but the long uterus is made up of four specialised regions. Neoechinorhynchus rigidus (Van Cleave, 1928), resembles N. poonchensis sp. n. It is distinguished from N. poonchensis sp. n. by having smaller trunk, proboscis, and male reproductive structures, equal testes, unequal lemnisci with three giant nuclei each, and much larger anterior proboscis hook (130 μm in males) than that originally described by Van Cleave (1928) (70 μm in a female). Anterior hook length alone is sufficient to conclude that the N. rigidus of Datta (1937) is not the same species as the N. rigidus of Van Cleave (1928). Van Cleave's (1928) species remains valid and that of Datta (1937) is considered a different species named Neoechinorhynchus pseudorigidus sp. n., herein. Micropores of N. poonchensis sp. n. have variable distribution in different trunk regions and the Energy Dispersive X-ray analysis demonstrated higher levels of sulfur and lower levels of calcium and phosphorus. Sequences of the 18S rDNA gene from nuclear DNA, and cytochrome c oxidase subunit I (cox1) from mitochondrial DNA of N. poonchensis sp. n. were amplified and aligned with other sequences available on GenBank. Maximum likelihood (ML) and Bayesian inference (BI) analyses inferred for 18S rDNA and cox1 showed that N. poonchensis sp. n. was nested in a separate clade.
The larval morphology of the western Palaearctic zygaenid species Aglaope infausta (Linnaeus, 1767) is described and figured in detail. Unlike other members of the zygaenid subfamily Chalcosiinae, the last instar larva of A. infausta has numerous secondary setae and a multitude of cuticular cavities that are devoid of openings. The other chalcosiine genera have primary setae and cuticular cavities with specialized openings through which a defensive secretion can be discharged. Imaginal characters, on the other hand, provide strong evidence for placing Aglaope in the Chalcosiinae.
The Asian neriid fly genus Telostylus Bigot (Diptera: Neriidae) is revised, including a key and illustrations of its species. Lectotype designations are proposed for four species: Telostylus babiensis de Meijere, T. decemnotatus Hendel, T. remipes (Walker) and T. trilineatus de Meijere. Two new species are described: Telostylus marshalli Sepúlveda & de Carvalho, sp. n., from Sarawak, Malaysia, and T. whitmorei Sepúlveda & de Carvalho, sp. n., from Masbate, Philippines. The morphology of Telostylus binotatus Bigot and T. remipes (Walker) is discussed in order to support their synonymy. Additionally, new country records are provided for four species: Telostylus babiensis de Meijere for Philippines, T. binotatus Bigot for Papua New Guinea, T. inversus Hennig for Malaysia and Indonesia, and T. trilineatus de Meijere for Malaysia and Philippines.
In Hymenoptera and Heteroptera, the absence of micropyles is one criterion for categorizing an egg as trophic. Undeveloped eggs are observed in more than 90% of the egg clusters of the ladybird beetle Harmonia axyridis Pallas. Traditionally, these undeveloped eggs are regarded as "trophic eggs." The surfaces of the eggs of H. axyridis were examined using scanning electron microscopy and the presence of micropyles in the shells of developing and undeveloped eggs determined. Micropyles are circularly distributed around the top of eggs and present in both developing and undeveloped eggs. The number of micropyles in the shells of developing and undeveloped eggs did not differ significantly. Our results indicate that the undeveloped eggs of H. axyridis have micropyles, suggesting that the mechanisms regulating the production of undeveloped eggs in H. axyridis differ from those resulting in the production of trophic eggs by Hymenoptera and Heteroptera.