Tomicus piniperda is a pest in pine stands in Eurasia and is also found in the USA, where it has caused a decline in the abundance of pine since 1992. Knowledge of the genetic structure of pine shoot beetle populations is important for understanding their phylogeographic history and for quarantine control. In this study, European, Asian and American T. piniperda populations were analyzed by sequencing a region of the mitochondrial COI gene. Twenty-five haplotypes (HT) were detected and over 70% of these HT were found in individual areas, e.g. 5 HT in China, 5 HT in France and 3 HT in Spain. Nested clade analysis revealed that most European and the American population was in a clade containing 9 HT connected by one to two mutational steps. A second clade contained HT from France (2 HT), Spain (2 HT), Sweden (1 HT), Russia (1 HT) and China (5 HT). In this clade, one to 13 mutational steps and 13 missing or theoretical HT were detected. The third clade had 5 HT from France, Russia, Poland, Finland and Switzerland; 1 to 7 mutational steps and 5 missing or theoretical HT were detected. Although only a few significant relationships were found in the nested clade analysis, the following conclusions can be drawn: (1) T. piniperda is a polymorphic species with numerous HT throughout Europe, and HT are likely to exist regarding the missing or theoretical HT; (2) It is likely there were refugial areas in Southern Europe and Western Russia; (3) The Pyrenees formed a barrier to migration after the last ice age; (4) Chinese and European populations have been separated for at least 0.6 MYA.
The taxonomy and distribution of rodents in Zambia was comprehensively summarized in 1978 by W.F.H. Ansell in his excellent book Mammals of Zambia. Despite the fact that during the last three decades many new taxonomic revisions of African rodents were published and extensive new material collected, not much work has been done on Zambian rodents since the book publication. Here we summarize the current knowledge of one of the most speciose group of African rodents, the tribe Praomyini, in Zambia. We review available historical records and revise our recently collected material by sequencing the mitochondrial DNA gene of cytochrome b. The presence of eight species of Praomyini in Zambia is documented and the pattern of their geographical distribution is described and discussed. Two species, Praomys minor and Mastomys coucha, are reported for the first time from Zambia and Praomys cf. jacksoni probably represents a new undescribed species. On the other hand, the actual occurrence of Colomys goslingi, known in Zambia only from one historical record, is questionable. The results document the usefulness of the DNA barcoding approach for description of species diversity of taxonomically complicated groups with many cryptic species.
Despite the global distribution of the brown dog tick, Rhipicephalus sanguineus (Latreille, 1806) sensu lato (s.l.), limited information exists about their identity from the Arabian Peninsula. Ticks from free roaming urban dogs and dromedary camels in Riyadh, Saudi Arabia were morphologically identified, confirmed with scanning electron microscopy and characterised at mitochondrial DNA (cox1, 12S rDNA and 16S rDNA). A total of 186 ticks were collected from 65 free roaming dogs (n = 73) and 84 dromedary camels (n = 113). Morphologically, 5.9% (11/186) were R. sanguineus s.l. and Hyalomma spp. (93.5%, 174/186). From within R. sanguineus s.l., the presence of Rhipicephalus cf. camicasi Morel, Mouchet et Rodhain, 1976 (1 dog, 2 camels) and Rhipicephalus turanicus Pomerantsev, 1936 (1 camel) is reported. The examined R. cf. camicasi form a sister group to R. sanguineus s.l. tropical lineage at all DNA markers. Dogs were parasitised by Hyalomma dromedarii Koch, 1844 (n = 59), Hyalomma impeltatum Schulze et Schlottke, 1930 (n = 1), Hyalomma excavatum Koch, 1844 (n = 2), Hyalomma turanicum Pomerantsev, 1946 (n = 1) and Hyalomma rufipes Koch,1844 (n = 1). DNA from dog blood (n = 53) from Riyadh confirmed a low prevalence of canine vector-borne pathogens that does not exceed 5.7% for Babesia spp., Mycoplasma spp., Anaplasma platys, Hepatozoon canis and Ehrlichia canis using multiplexed tandem PCR (MT-PCR) and diagnostic PCR. Low prevalence of R. sanguineus s.l. on dogs likely contributed to the low level of canine vector-borne pathogens in Saudi Arabia. We demonstrate that dogs in the central Arabian Peninsula are more commonly parasitised by Hyalomma spp. than R. sanguineus s.l., Shona Chandra, Karen Smith, Abdullah D. Alanazi, Mohamed S. Alyousif, David Emery, Jan Šlapeta., and Obsahuje bibliografii
The existing literature, museum records, personal reports of field biologists and our own field results were compiled to assess the present distribution of the common hamster within Transylvania and the Pannonian Plain of Romania. Combining available distribution data and the existence of natural barriers we were able to designate five, possibly separate, populations: the Pannonian Plain, the Transylvanian Plateau, the Olt Valley, the Braşov Depression and the Ciuc Depression population. The Pannonian Plain and
the Transylvanian Plateau populations showed mass outbreaks in recent years. Twenty three individuals were available for the genetic analyses. The populations belonged to the Pannonia lineage, based on the sequences of 16SrRNA, cytb and ctr of mtDNA. In general we found very high diversity in mtDNA and 16 microsatellite loci. Moreover the most common ctr haplotypes for the Transylvanian Plateau were also present in the Pannonian Plain population and in populations from Hungary and Slovakia, which indicates recent or even current exchange of individuals. Summing up, recent mass outbreaks and high levels of genetic diversity, with some indication of current or very recent gene flow, showed that Romanian populations are in good state, at least compared to many other European countries. As such, these populations should be of particular interest and placed under protection, as they could serve as the reservoir of the genetic variability for the European Pannonia lineage of the common hamster.
Despite the long-term study of the house mouse hybrid zone in Europe knowledge of its course in some areas is still rather vague. Comparisons of different portions of the zone showed some common patterns, however, several discordances were also revealed, the most remarkable being introgression of the Y chromosome. We sampled mice along the presumed course of the secondary contact zone between two subspecies, Mus musculus musculus and M. m. domesticus, from Schleswig-Holstein to southern Bavaria, in order to localize more precisely its position. A second aim was to reveal whether introgression shows some general rules obscured until now by studies of geographically isolated transects of the zone. We employed maternally (mtDNA), paternally (Y), and biparentally inherited markers and related their introgression patterns to the hybrid index (HI) based on five X-linked loci. While transition of autosomal loci across the zone was congruent with changes in HI, mtDNA showed bidirectional introgression with alien alleles occurring far behind the zone. Finally, the Y chromosome displayed asymmetric unidirectional introgression of the musculus type into domesticus background. We discuss evolutionary forces shaping these patterns.
Three rheophilic species of the western Palaearctic Barbus with adjacent geographic distributions are recognised in the Danube River basin, each diagnosed by a set of unique mitochondrial DNA alleles. Barbus petenyi Heckel, 1852 from the Eastern and Southern Carpathians and from the Stara Planina Mts is redescribed and a neotype is designated. Barbus carpathicus, new species, is distributed in the Western and Eastern Carpathians. Barbus balcanicus, new species, occurs in the Dinaric and Western Stara Planina Mts. The three species are morphologically similar to each other but B. balcanicus can be distinguished by subtle differences in the snout shape and body and fin colour pattern. As evident from genetic data the name B. cyclolepis waleckii Rolik, 1970 was proposed for the hybrids between B. barbus and B. carpathicus and cannot be used as valid.