The purpose of this study was to elucidate the intestinal serotonin (5-HT) receptor subtypes involved in fluid transport in the pig jejunum in uioo. The fluid accumulating effect of intraluminally administered 5-HT, renzapride, methysergide, ketanserin, granisetron, citalopram and intravenous indomethacin, was tested in tied- off loops in uiuo. 5-HT caused a dose-dependent fluid accumulation, which was reduced by indomethacin by about 30 %. Renzapride, methysergide, ketanserin, granisetron and citalopram all caused fluid accumulation. Taking into account these fluid accumulating effects, renzapride, methysergide, ketanserin and granisetron reduced the fluid accumulating effect of 5-HT, giving a maximal reduction of 70, 46, 76, and 80 %, respectively. These data suggest the existence of intestinal 5-HT receptor subtypes involved in fluid transport in the pig jejunum. The antagonistic effects of indomethacin, ketanserin and granisetron, suggest the involvement of prostangladins, as well as the 5-HT2 and the 5-HT3 receptor subtypes in the fluid accumulating response of 5-HT.
Glucagon and α-adrenergic-induced glycog enolysis is realized via the agonist/adenylyl cyclase/cAMP/protein kinase signaling pathway or via the activation of phosphorylase kinase by the mobilized calcium that supports the inhibition of glycogen synthase, respectively. The role of nitric oxide (NO) in this process has not been extensively studied. The present work was directed to the question whether NO is produced during glucagon-induced glycogenolysis in rat hepatocyte in a similar way like α-adrenoceptor stimulation. Glycogen-rich hepatocyte cultures were used. NO production (NO2-) was assessed under the influence of glucagon, dibutyryl cyclic AMP (db-cAMP), forskolin, the nitric oxide synthase (NOS) inhibitors Nω-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine, and the NO donor S-nitroso-N-acetyl penicillamine (SNAP). Inducible NOS (iNOS) mRNA was examined by reverse transcription-polymerase chain reaction. Glycogenolysis was followed up by estimation of medium glucose levels. The amount of glucose and NO2- released by glycogen-rich hepatocytes was increased as a result of glucagon, db-cAMP, forskolin and SNAP treatments. iNOS gene expression was upregulated by glucagon. Glycogenolysis that occurs through glucagon receptor stimulation involves NO production downstream of transduction pathways through an isoform of NO synthase. The present and previous studies document possible involvement of NO signaling in glycogenolytic response to glucagon and adrenergic agonists in hepatocytes., H. Farghali, J. Hodis, N. Kutinová-Canová, P. Potměšil, E. Kmoníčková, Z. Zídek., and Obsahuje bibliografii a bibliografické odkazy
Maintenance of norepinephrine (NE)-induced contraction is dependent on Ca2+ influx through L-type voltage-dependent Ca2+ channels (VDCC), which is opposed by nitric oxide. Adrenergic receptors are coupled with different G proteins, including inhibitory G proteins (Gi) that can be inactivated by pertussis toxin (PTX). Our study was aimed to investigate the effects of endothelium removal, PTX pretreatment and acute VDCC blockade by nifedipine on the contractions of femoral arteries stimulated by norepinephrine. We used 12-week-old male WKY, half of the rats being injected with PTX (10 μg/kg i.v., 48 h before the experiment), which considerably reduced their blood pressure (BP). Contractions of isolated arteries were measured using Mulvany-Halpern myograph. NE dose-response curves determined in femoral arteries from PTX-treated WKY rats were shifted to the right compared to those from control WKY. On the contrary, removal of endothelium augmented NE dose-response curves shifting them to the left. Acute VDCC blockade by nifedipine (10-7 M) abolished all differences in NE dose-response curves which were dependent on the presence of either intact endothelium or functional Gi proteins because all NE dose-response curves were identical to the curve seen in vessels with intact endothelium from PTX-treated animals. We can conclude that BP reduction after PTX injection is accompanied by the attenuation of NE-induced contraction of femoral arteries irrespective of endothelium presence. Moreover, our data indicate that both vasodilator action of endothelium and Gi-dependent vasoconstrictor effect of norepinephrine operate via the control of Ca2+ influx through VDCC., S. Líšková, J. Kuneš, J. Zicha., and Obsahuje bibliografii a bibliografické odkazy
NMDA receptors have received much attention over the last few decades, due to their role in many types of neural plasticity on the one hand, and their involvement in excitotoxicity on the other hand. There is great interest in developing clinically relevant NMDA receptor antagonists that would block excitotoxic NMDA receptor activation, without interfering with NMDA receptor function needed for normal synaptic transmission and plasticity. This review summarizes current understanding of the structure of NMDA receptors and the mechanisms of NMDA receptor activation and modulation, with special attention given to data describing the properties of various types of NMDA receptor inhibition. Our recent analyses point to certain neurosteroids as NMDA receptor inhibitors with desirable properties. Specifically, these compounds show use-dependent but voltage-independent block, that is predicted to preferentially target excessive tonic NMDA receptor activation. Importantly, neurosteroids are also characterized by use-independent unblock, compatible with minimal disruption of normal synaptic transmission. Thus, neurosteroids are a promising class of NMDA receptor modulators that may lead to the development of neuroprotective drugs with optimal therapeutic profiles., V. Vyklicky ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Certain liver metabolic diseases point to the presence of disturbances in glycogen deposition. Epinephrine raises the cAMP level that activates protein kinase A leading to the activation of phosphorylase and glycogen breakdown. In the present report, we sought to investigate whether NO is produced during adrenoceptor agonist-induced glycogenolysis in rat hepatocytes in cultures. Isolated glycogen rich rat hepatocytes in cultures were used. NO production (NO2-) was assessed under the effect of adrenergic agonists and adrenergic agonist/antagonist pairs, dibutyryl cyclic AMP sodium-potassium salt (db-cAMP), NO synthase (NOS) inhibitors Nω-nitro-L-arginine methyl ester (L-NAME), aminoguanidine (AG) and the NO donor S-nitroso-N-acetyl penicillamine (SNAP) . The inducible NO synthase (iNOS) mRNA was examined by the reverse transcription-polymerase chain reaction (RT-PCR). Glycogenolysis was quantified by glucose levels released into medium. The amount of glucose and NO2- released by hepatocytes was increased as a result of epinephrine, phenylephrine or db-cAMP treatments. The increase in glucose and NO2- released by epinephrine or phenylephrine was blocked or reduced by prazosin pretreatment and by NOS inhibitors aminoguanidine and L-NAME. iNOS gene expression was up-regulated by epinephrine. It can be concluded that glycogenolysis occurs through α adrenoceptor stimulation and a signaling cascade may involve NO production., J. Hodis, N. Kutinová-Canová, P. Potměšil, L. Kameníková, E. Kmoníčková, Z. Zídek, H. Farghali., and Obsahuje biblografii a bibliografické odkazy
Epileptic afterdischarges (ADs) elicited by electrical stimulation of sensorimotor cortical area were used as a model to study the role of neurotransmitter systems in cortical seizures in three age groups of developing rats. Drugs augmenting inhibition mediated by GABAA receptors were found to suppress ADs in all age groups, their activity was usually more marked in younger than in 25-day-old rat pups. Drugs potentiating GABAB receptors exhibit lower efficacy and more complicated developmental profile than GABAA-ergic drugs. Effects of an antagonist of GABAB receptor – marked prolongation of ADs in all three age groups – suggest an important role of GABAB receptors in arrest of cortical seizures. Drugs affecting glutamate receptors exhibit variable effects, usually better expressed in older animals than in 12-day-old ones. No specific role for ionotropic as well as metabotropic glutamate receptors could be predicted. Activation of adenosinergic inhibitory modulatory system also exhibited anticonvulsant action in the present model. All three neurotransmitter systems probably participate in mechanisms of generation, maintenance and arrest of cortical seizures., P. Mareš, H. Kubová., and Obsahuje bibliografii a bibliografické odkazy