Vedlejší fyzikální jednotky se obvykle zavádějí tehdy, když existují značné praktické důvody a přínosy z jejich užití. Je DARI takovou vedlejší jednotkou? V článku "DARI - jednotka měření vhodná k praktickému vyhodnocení účinků nízkých dávek ionizujícího záření" [1] autoři popisují své důvody pro zavedení vedlejší, či dokonce nové jednotky, kterou pojmenovali DARI (Dose Annuelle due aux Radiations Internes). Dosud se k stanovení dávkového ekvivalentu Hg používá Sievert [J.kg1]. Autoři se domnívají, "že dávka je udávána v jednotkách, které jsou pro laiky obtížně srozumitelné", a navrhují jednotku, jež je ekvivalentní dávce 0,2 mSv a je blízká dávce, již člověk obdrží vlivem radioaktivity lidských tkání, konkrétně příspěvku k její hodnotě od draslíku 40K a uhlíku 14C. and Pavel Pitřík.
Na str. 17 tohoto čísla zmiňuje Andrej Geim, jediný laureát jak Nobelovy ceny, tak Ig-Nobelovy ceny, výsledky svých experimentů se silovými účinky magnetických polí na diamagnetické objekty mediálně proslulé jako "létající žába". V historické rubrice přinášíme čtenářům zprávu o experimentech J. Moosera zamýšlejícího již před více než 110 lety využít mechanického účinu silného magnetického pole na struktury oka ke korekci očních vad. Dobový obraz problematiky poskytují příslušné partie z přednášek V. Strouhala. and J. Mooser a V. Strouhal.
The majority of matter in our universe exists at high pressures and high temperature, such as found in the deep interior of planets and stars, beyond those experienced the surface of the Earth. Recent development in high pressure techniques enabled simulation of these conditions in laboratoire and thus investigaton of matter at extreme (high pressures and temperatures) conditions. A static compression technique utilizing a diamond anvil-cell (DAC) is today a well-established technique yielding a wealth of information on the behaviour of highle-compressed materials. It soon became clear that matter can adopt complex structures and can exhibit exotic physical properties under pressure. The DAC is a powerful tool, spread across multiple research disciplines from material science searching for novel materials to planetary sciences shedding light on the most remote parts of our planet., Zuzana Konôpková., and Obsahuje seznam literatury
Diferenciální operátory, jako gradient, divergence, rotace, Laplaceův operátor a další, jsou nejen důležitými pojmy matematické analýzy či diferenciální geometrie, ale především fyziky. Dokonce lze říci, že právě při formulaci fyzikálních teorií vznikaly. V tomto příspěvku ukazujeme, že k pochopení významu a uplatnění diferenciálních operátorů ve fyzice není nutné nejprve důkladně studovat matematickou teorii, ale že je možné použít vcelku korektního elementárního matematického výkladu. Vděčným příkladem, jehož prostřednictvím lze takový výklad provést, je mechanika kapalin, jako konkrétní ukázku použijeme úvahy o rozložení tlaku v kapalině a dva důležite zákony zachování v mechanice kapalin: rovnici kontinuity a Bernoulliovu rovnici., Differential operators such as gradient, divergence, rotation, Laplace operator etc. are important concepts not only for mathematical analysis or differential geometry, but primarily for physics. We show that for understanding of the meaning and applications of them one can use an elementary but still math ematically correct explanation. These operators can be used in mechanics of fluids to find solutions to questions such as the
distribution of pressure or two important conservation laws in fluid mechanics - continuity equation and Bernoulli equation., Jana Musilová, Pavla Musilová., and Obsahuje seznam literatury
Článek se zabývá disertací Nielse Bohra, kterou obhájil roku 1911. V první části je nastíněn vývoj Bohrovy disertační práce a jeho snahy práci přeložit do angličtiny. Dále Bohrův pobyt v Cambridgi u J. J. Thomsona a důvody, proč se nakonec rozhodl strávit zbytek svého zahraničního studijního pobytu v Manchesteru u E. Rutherforda. Druhá část příspěvku shrnuje historii vývoje elektronové teorie kovů. Nakonec jsou uvedeny závěry, ke kterým Bohr došel a ze kterých můžeme vyzdvihnout ten, že klasická mechanika je pro objekty na atomární úrovni nedostatečná., The article deals with Niels Bohr‘s dissertation defended in 1911. The first part of the article outlines the development of Bohr‘s dissertation and his strong efforts to translate the work into English. It also depicts Bohr‘s stay in Cambridge with J. J. Thomson and the reasons why he decided to spend the rest of his study abroad in Manchester with E. Rutherford. The second part describes the development of the electron theory of metals. It also summarizes conclusions of Bohr‘s dissertation from which we can highlight that classical mechanics is ineffective for objects at the atomic level., Kateřina Šraitrová., and Obsahuje seznam literatury