The effects of nitric oxide on evoked acetylcholine (ACh) release were studied at two identified cholinergic neuro-neuronal synapses of the nervous system of the mollusc Aplysia californica. The NO- donor, 3-morpholinosydnonimine (SIN-1), decreased the amplitude of evoked inhibitory postsynaptic currents (buccal ganglion) and potentiated that of evoked excitatory postsynaptic currents (abdominal ganglion). SIN-1 acted by modulating the number of ACh quanta released. 8Br-cGMP mimicked the effects of NO on ACh release in both types of synapses thus pointing to the involvement of a NO- sensitive guanylate cyclase. Presynaptic voltage-dependent Ca2+ and K+ (Ia and late outward rectifier) currents were not modified by SIN-1 suggesting another final target for NO/cGMP. The labelling of a NO-synthase by immunostaining in several neurones as well as the modulation of ACh release by L-arginine indicate that an endogenous NO-synthase is involved in the modulation of synaptic efficacy in both buccal and abdominal ganglia.