Thylakoid membranes (TM) of the cyanobacterium Synechococcus elongatus were exposed for 30 min to the influence of 0, 10, 100, and 1 000 mM CdCl2 (= Cd0, Cd10, Cd100, and Cd1000). Cd10 and Cd100 caused some increase in activity of photosystem 2, PS2 (H2O → DCPIP), while distinct inhibition was observed with Cd1000. We also observed a similar effect when measuring oxygen evolution (H2O → PBQ + FeCy). Chloroplasts of spinach (Spinacia oleracea L.) were incubated for 30 min with 0, 15, 30, and 60 mM CdCl2 (= Cd0, Cd15, Cd30, and Cd60). All concentrations studied inhibited the PS2 activity, the effect being stronger with increasing concentration of Cd2+. The photosynthetic oxygen evolution activity was also influenced most distinctly by the highest concentration employed, i.e. Cd60. Electrophoretic analysis of the protein composition of cyanobacterium TM showed chief changes in the molecular mass regions of Mr 29 000 and 116 000, while with spinach chloroplasts the most distinct differences were observed in the regions of Mr 15 000 and 50 000. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activity in cyanobacterial spheroplasts still remained on the 40 % level in the case of Cd1000, but it decreased down to approx. 2.5 % in the Cd60 sample of spinach chloroplasts. and M. Nováková, E. Matějová, D. Sofrová.
Variables of gas exchange of flag leaves and grain yield potentials of five representative winter wheat (Triticum aestivum L.) cultivars varied greatly across different development stages under the same management and irrigation. The cultivars with high yield potential had higher net photosynthetic rate (PN), PPFD (photosynthetic photon flux density) saturated photosynthetic rate (Psat), stomatal conductance (gs), and maximum apparent quantum yield of CO2 fixation (Φm,app) than those with low grain yield, but their dark respiration rate (RD) and compensation irradiance (Ic) were remarkably lower. Compared with overall increase of yield potential of 71 % from low yield cultivars to high yield ones, PN, Psat, Φm,app, and gs were 13, 19, 57, and 32 % higher, respectively; but RD and Ic decreased by 19 and 76 %, respectively. Such difference was evidently large during anthesis stage (e.g., PN by 33 %), which indicated that this period could be the best for assisting further selection for better cultivars. However, transpiration rate (E) and water use efficiency (WUE) differed only little. At different development stages, especially at anthesis, PN and Psat were positively correlated with Φm,app, gs, and yield potential, and negatively correlated with RD and Ic. Thus the high-yield-potential winter wheat cultivars possess many better characters in photosynthesis and associated parameters than the low-yield cultivars. and G. M. Jiang ... [et al.].
When the dimensions of standard commercial chambers for measuring gas exchange cannot accommodate the object being measured, scientists construct their own chambers. The time needed to reach chamber steady state (chamber response time) depends on net system volume (e.g. chamber and tubing volume) and airflow. Unfortunately, some authors take chamber response time into consideration while others ignore it. We present the formula for calculating chamber response time. and I. Weiss, Y. Mizrahi, E. Raveh.
Significant part of our work was developing a new type of CO2 and H2O gas exchange chambers fit for measuring stand patches. Ground areas of six chambers (ranged between 0.044-4.531 m2) constituted a logarithmic series with doubling diameters from 7.5 to 240.0 cm. We demonstrate one of the first results for stand net ecosystem CO2 exchange (NEE) rates and temporal variability for two characteristic Central European grassland types: loess and sand. The measured mean NEE rates and their ranges in these grasslands were similar to values reported in other studies on temperate grasslands. We also dealt with the spatial scale dependence from ecophysiological point of view. Our chamber-series measurement was performed in a perennial ruderal weed association. The variability of CO2-assimilation of this weed vegetation showed clear spatial scale-dependence. We found the lowest variability of the vegetation photosynthesis at the small-middle scales. The results of spatial variability suggest the 0.2832 m2 patch size is the characteristic unit of the investigated weed association and there is a kind of synphysiological minimi-area with characteristic size for each vegetation type. and Sz. Czóbel ... [et al.].
Its high oxidant capacity and ability to generate reactive oxygen species cause ozone toxicity. We studied the effect of ambient ozone on chlorophyll (Chl) a fluorescence, antioxidant enzymes, ascorbate contents, and lipid peroxidation in potatoes grown in open-top chambers in the field. In plants grown in non-filtered air (NFA), the development of non-photochemical quenching brought about a decrease in photosystem 2 (PS2) photochemical efficiency. Also the ability of PS2 to reduce the primary acceptor QA was lower than in charcoal-filtered, ozone-free air (CFA). Changes in Chl fluorescence yield were associated with changes in the thylakoid membrane. Ozone altered chloroplast membrane properties, as indicated by an increase in membrane lipid peroxidation in FNA-leaves compared to CFA plants. The ascorbate pool and activities of antioxidant enzymes were used for an indication of the detoxification system state in NFA and CFA leaves, whereby ozone affects the ascorbate concentration and decreases the antioxidant enzymes activities. The capacity of both detoxifying systems together was not high enough to protect potato plants against ambient ozone concentrations which reduced the photosynthetic yield in this potato cultivar. and A. Calatayud, J. W. Alvarado, E. Barreno.