Bilirubin is the final product of heme catabolism in the systemic circulation. For decades, increased serum/plasma bilirubin levels were considered an ominous sign of an underlying liver disease. However, data from recent years convincin gly suggest that mildly elevated bilirubin concentrations are as sociated with protection against various oxidative stress-mediated diseases, atherosclerotic conditions being the most clinically relevant. Although scarce data on beneficial effects of bilirubin had been published also in the past, it took until 1994 when the first clinical study demonstrated an increased risk of coronary heart disease in subjects with low serum bilirubin levels, and bilirubin was found to be a risk factor for atherosclerotic diseases independent of standard risk factors. Consistent with t hese results, we proved in our own studies, that subjects with mild elevation of serum levels of unconjugated bilirubin (benign hyperbilirubinemia, Gilbert syndrome) have much lower prevalence/incidence of cor onary heart as well as peripher al vascular disease. We have also demonstrated that this association is even more general, with serum bilirubin being a biomarker of numerous other diseases, often associated with increased risk of atherosclerosis. In addition, very recent data have demonst rated biological pathways modulated by bilirubin, which are responsible for observed strong clinical associations., L. Vítek., and Obsahuje bibliografii
ECM is composed of different collagenous and non-collagenous proteins. Collagen nanofibers play a dominant role in maintaining the biological and structural integrity of various tissues and organs, including bone, skin, tendon, blood vessels, and cartilage. Artificial collagen nanofibers are increasingly significant in numerous tissue engineering applications and seem to be ideal scaffolds for cell growth and proliferation. The modern tissue engineering task is to develop three-dimensional scaffolds of appropriate biological and biomechanical properties, at the same time mimicking the natural extracellular matrix and promoting tissue regeneration. Furthermore, it should be biodegradable, bioresorbable and non-inflammatory, should provide sufficient nutrient supply and have appropriate viscoelasticity and strength. Attributed to collagen features mentioned above, collagen fibers represent an obvious appropriate material for tissue engineering scaffolds. The aim of this minireview is, besides encapsulation of the basic biochemical and biophysical properties of collagen, to summarize the most promising modern methods and technologies for production of collagen nanofibers and scaffolds for artificial tissue development., L. Koláčná, J. Bakešová, F. Varga, E. Košťáková, L. Plánka, A. Nečas, D. Lukáš, E. Amler, V. Pelouch., and Obsahuje bibliografii
Spinal cord injury results in a permanent neurological deficit due to tissue damage. Such a lesion is a barrier for “communication” between the brain and peripheral tissues, effectors as well as receptors. One of the primary goal s of tissue engineering is to bridge the spinal cord injury and re-establish the damaged connections. Hydrogels are biocompatible implants used in spinal cord injury repair. They can create a permissive environment and bridge the lesion cavities by providing a scaffold for the regeneration of neurons and their axons, glia and other tissue elements. The advantage of using artificial materials is the possibility to modify their physical and chemical properties in order to develop the best implant suitable for spinal cord injury repair. As a result, several types of hydrogels have been tested in experimental studies so far. We review our work that has been done during the last 5 years with various types of hydrogels and their applications in experimental spinal cord injury repair., A. Hejčl, P. Lesný, M. Přádný, J. Michálek, P. Jendelová, J. Štulík, E. Syková., and Obsahuje bibliografii a bibliografické odkazy
Noble gases are known for their inertness. They do not react chemically with any element at normal temperature and pressure. Through that, some of them are known to be biologically active by their sedative, hypnotic and analgesic properties. Common inhalation anesthetics are characterized by some disadvantages (toxicity, decreased cardiac output, etc). Inhalation of xenon introduces anesthesia and has none of the above disadvantages, hence xenon seems to be the anesthetic gas of the future (with just one disadvantage - its cost). It is known that argon has similar anesthetic properties (under hyperbaric conditions), which is much cheaper and easily accessible. The question is if this could be used in clinical practice, in anesthesia of patients who undergo treatment in the hyperbaric chamber. Xenon was found to be organ-protective. Recent animal experiments indicated that xenon decreases infarction size after ischemic attack on brain or heart. The goal of our study is to check if hyperbaric argon has properties similar to those of xenon., J. Růžička, J. Beneš, L. Bolek, V. Markvartová., and Obsahuje bibliografii
A new generator of two successive shock waves focused to a common focal point has been developed. Cylindrical pressure waves created by multichannel electrical discharges on two cylindrical composite anodes are focused by a metallic parabolic reflector - cathode, and near the focus they are transformed to strong shock waves. Schlieren photos of the focal region have demonstrated that mutual interaction of the two waves results in generation of a large number of secondary short-wavelength shocks. Interaction of the focused shockwaves with liver tissues and cancer cell suspensions was investigated. Localized injury of rabbit liver induced by the shock waves was demonstrated by magnetic resonance imaging. Histological analysis of liver samples taken from the injured region revealed that the transition between the injured and the healthy tissues is sharp. Suspension of melanoma B16 cells was exposed and the number of the surviving cells rapidly decreased with increasing number of shocks and only 8 % of cells survived 350 shocks. Photographs of cells demonstrate that even small number of shocks results in perforation of cell membranes., J. Beneš, P. Šunka, J. Králová, J. Kašpar, P. Poučková., and Obsahuje bibliografii
Obesity is a strong cardiometabolic (CM) risk factor in children. We tested potential CM risk in obese/overweight children and the effect of an intensive lifestyle intervention using newer CM markers: atherogenic index of plasma AIP [Log(TG/HDL-C)], apoB/apoAI ratio and a marker of insulin resistance HOMA-IR. The participants (194 girls, 115 boys, average age 13) were enrolled in an intensive, one-month, inpatient weight reduction program. The program consisted of individualised dietary changes and the exercise program comprised aerobic and resistance training. Anthropometrical and biochemical parameters in plasma and CM risk biomarkers - (AIP, apoB/apoAI ratio and HOMA-IR) were examined before and after the intervention. AIP and HOMA-IR significantly correlated with BMI while apoB/apoAI ratio did not. Only AIP and HOMA-IR showed systematic increases according to the level of obesity by BMI quartiles. Lifestyle intervention significantly improved anthropometrical and biochemical values and the biomarkers too. The response of lipid parameters to the intervention was considerably higher in boys than in girls. The children were stratified into three risk categories according to AIP, where 13.8 % of boys and 5.3 % of girls fell into high risk category. The monitored biomarkers may complement each other in the prognosis of CM risk. AIP was strongly related to obesity and to lipid and glycid metabolism, while the relationship of the apoB/apoAI ratio to obesity and glycid metabolism was not significant. The obese children benefited from the intensive lifestyle intervention which improved the anthropometrical and biochemical parameters and CM risk biomarkers., M. Vrablík, M. Dobiášová, L. Zlatohlávek, Z. Urbanová, R. Češka., and Obsahuje bibliografii
Primary graft dysfunction (PGD) is a life-threatening complication among heart transplant recipients and a major cause of early mortality. Although the pathogenesis of PGD is still unclear, ischemia/reperfusion injury has been identified as a predominant factor. Both necrosis and apoptosis contribute to the loss of cardiomyocytes during ischemia/reperfusion injury, and this loss of cells can ultimately lead to PGD. The aim of our prospective study was to find out whether cell death, necrosis and apoptosis markers present in the donor myocardium can predict PGD. The prospective study involved 64 consecutive patients who underwent orthotopic heart transplantation at our institute between September 2010 and January 2013. High-sensitive cardiac troponin T (hs-cTnT) as a marker of minor myocardial necrosis was detected from arterial blood samples before the donor’s pericardium was opened. Apoptosis (caspase-3, active + pro-caspase-3, bcl-2, TUNEL) was assessed from bioptic samples taken from the right ventricle prior graft harvesting. In our study, 14 % of transplant recipients developed PGD classified according to the standardized definition proposed by the ISHLT Working Group. We did not find differences between the groups in regard to hs-cTnT serum levels. The mean hs-cTnT value for the PGD group was 57.4±22.9 ng/l, compared to 68.4±10.8 ng/l in the group without PGD. The presence and severity of apoptosis in grafted hearts did not differ between grafts without PGD and hearts that subsequently developed PGD. In conclusion, our findings did not demonstrate any association between measured myocardial cell death, necrosis or apoptosis markers in donor myocardium and PGD in allograft recipients. More detailed investigations of cell death signaling pathways in transplanted hearts are required., O. Szarszoi, J. Besik, M. Smetana, J. Maly, M. Urban, J. Maluskova, A. Lodererova, L. Hoskova, Z. Tucanova, J. Pirk, I. Netuka., and Obsahuje bibliografii
The present article introduces a novel method of characterizing the macromechanical cartilage properties based on dynamic testing. The proposed approach of instrumented impact testing shows the possibility of more detailed investigation of the acting dynamic forces and corresponding deformations within the wide range of strain rates and loads, including the unloading part of stress-strain curves and hysteresis loops. The presented results of the unconfined compression testing of both the native joint cartilage tissues and potential substitute materials outlined the opportunity to measure the dissipation energy and thus to identify the initial mechanical deterioration symptoms and to introduce a better definition of material damage. Based on the analysis of measured specimen deformation, the intact and pathologically changed cartilage tissue can be distinguished and the differences revealed., F. Varga, M. Držík, M. Handl, J. Chlpík, P. Kos, E. Filová, M. Rampichová, A. Nečas, T. Trč, E. Amler., and Obsahuje bibliografii
To determine the role of postinspiratory inspiratory activity of the diaphragm in the biphasic ventilatory response to hypoxia in unanesthetized rats, we examined diaphragmatic activity at its peak (DI), at the end of expiration (DE), and ventilation in adult unanesthetized rats during poikilocapnic hypoxia (10 % O2) sustained for 20 min. Hypoxia induced an initial increase in ventilation followed by a consistent decline. Tidal volume (VT), frequency of breathing (fR), DI and DE at first increased, then VT and DE decreased, while fR and DI remained enhanced. Phasic activation of the diaphragm (DI - DE) increased significantly at 10, 15 and 20 min of hypoxia. These results indicate that 1) the ventilatory response of unanesthetized rats to sustained hypoxia has a typical biphasic character and 2) the increased end-expiratory activity of the diaphragm limits its phasic inspiratory activation, but this increase cannot explain the secondary decline in tidal volume and ventilation., H. Maxová, M. Vízek., and Obsahuje bibliografii