Using histochemical analysis (NADPH-diaphorase, Fluoro-Jade B dye and bis-benzimide 33342 Hoechst) we studied the influence of intraperitoneal administration of nicotine (NIC), kainic acid (KA) and combination of both these substances on hippocampal neurons and their changes. In experiments, 35-day-old male rats of the Wistar strain were used. Animals were pretreated with 1 mg /kg of nicotine 30 min prior to the kainic acid application (10 mg/kg). After two days, the animals were transcardially perfused with 4 % paraformaldehyde under deep thiopental anesthesia. Cryostat sections were stained to identify NADPH-diaphorase positive neurons that were then quantified in the CA1 and CA3 areas of the hippocampus, in the dorsal and ventral blades of the dentate gyrus and in the hilus of the dentate gyrus. Fluoro-Jade B positive cells were examined in the same areas in order to elucidate a possible neurodegeneration. In animals exposed only to nicotine the number of NADPH-diaphorase positive neurons in the CA3 area of the hippocampus and in the hilus of the dentate gyrus was higher than in controls. In contrast, KA administration lowered the number of NADPH-diaphorase positive cells in all studied hippocampal areas and in both blades of the dentate gyrus. Massive cell degeneration was observed in CA1 and CA3 areas of the hippocampus and in the hilus of the dentate gyrus after kainic acid administration. Animals exposed to kainic acid and pretreated with nicotine exhibited degeneration to a lesser extent and the number of NADPH-diaphorase positive cells was higher compared to rats, which were exposed to kainic acid only., V. Riljak, M. Milotová, K. Jandová, J. Pokorný, M. Langmeier., and Obsahuje bibliografii a bibliografické odkazy
Cardiovascular dynamic and variability data are commonly used in experimental protocols involving cognitive challenge. Usually, the analysis is based on a sometimes more and sometimes less well motivated single specific time resolution ranging from a few seconds to several minutes. The present paper aimed at investigating in detail the impact of different time resolutions of the cardiovascular data on the interpretation of effects. We compared three template tasks involving varying types of challenge, in order to provide a case study of specific effects and combinations of effects over different time frames and using different time resolutions. Averaged values of hemodynamic variables across an entire protocol confirmed typical findings regarding the effects of mental challenge and social observation. However, the hemodynamic response also incorporates transient variations in variables reflecting important features of the control system response. The fine-grained analysis of the transient behavior of hemodynamic variables demonstrates that information that is important for interpreting effects may be lost when only average values over the entire protocol are used as a representative of the system response. The study provides useful indications of how cardiovascular measures may be fruitfully used in experiments involving cognitive demands, allowing inferences on the physiological processes underlying the responses., H. K. Lackner, J. J. Batzel, A. Rössler, H. Hinghofer-Szalkay, I. Papousek., and Obsahuje bibliografii
Growth of the A549 cell line in a perfusion system suitable for use in a magnetic resonance study has been characterized and shown to be stable physiologically and hence appropriate for serial observations. Several methods of monitoring cell growth were compared to assess the behavior of the cells in this system. Comparison between NMR metabolite data and cell growth via cell counting showed that 31P NMR signals accurately reported cell doubling time. In contrast to most NMR cell culture systems, viable cells can be recovered from the perfusion system after the NMR measurements for further biochemical studies. These data further suggest that this system will be useful for studying the physiology and biochemistry of exponentially growing cells for at least two days in NMR tube culture., E. G. Shankland, J. C. Livesey, R. W. Wiseman, K. A. Krohn., and Obsahuje bibliografii
Direct cell-to-cell communication in the heart is maintained via gap junction channels composed of proteins termed connexins. Connexin channels ensure molecular and electrical signals propagation and hence are crucial in myocardial synchronization and heart function. Disease-induced gap junctions remodeling and/or an impairment or even block of intercellular communication due to acute pathological conditions results in derangements of myocardial conduction and synchronization. This is critical in the development of both ventricular fibrillation, which is a major cause of sudden cardiac death and persistent atrial fibrillation, most common arrhythmia in clinical practice often resulting in stroke. Many studies suggest that alterations in topology (remodeling), expression, phosphorylation and particularly function of connexin channels due to age or disease are implicated in the development of these life-threatening arrhythmias. It seems therefore challenging to examine whether compounds that could prevent or attenuate gap junctions remodeling and connex in channels dysfunction can protect the heart against arrhythmias that cause sudden death in humans. This assumption is supported by very recent findings showing that an increase of gap junctional conductance by specific peptides can prevents atrial conduction slowing or re-entrant ventricular tachycardia in ischemic heart. Suppression of ischemia-induced dephosphorylation of connexin seems to be one of the mechanisms involved. Another approach for identifying novel treatments is based on the hypothesis that even non-antiarrhythmic drugs with antiarrhythmic ability can modulate gap junctional communication and hence attenuate arrhythmogenic substrates., N. Tribulová, V. Knezl, Ľ. Okruhlicová, J. Slezák., and Obsahuje bibliografii a bibliografické odkazy
Myofibrillar creatine kinase (CK) that buffers ATP during fluctuating muscle energy metabolism has been selected for studies of conformational changes underlying the cellular control of enzyme activity. The force field was computed for three energetic states, namely for the substrate-free CK molecule, for the molecule conjugated with the MgATP complex, and for the molecule conjugated with the pair of reactants MgATP-creatine. Without its substrates, the enzyme molecule assumes an inactive "open" form. Upon binding of the MgATP complex, the CK molecule takes up a reactive "closed" conformation. Subsequent binding of creatine yields a nonreactive "intermediary" conformation. Acid-base catalysis is considered to be the basic principle for the reversible transfer of the phosphoryl group between the substrates. The results indicate that the substrate-induced energy minimizing conformational changes do not represent a sufficient condition for CK activity and that some other essential component of physiological control at the cellular level is involved in the transition from the intermediary to the closed structure of the molecule., J. A. Mejsnar, B. Sopko, M. Gergor., and Obsahuje bibliografii
The design of favorable mechanical properties and suitable surface modifications of hydrogels in order to stimulate specific cell response is a great challenge. N-(2-hydroxypropyl) methacryl-amide (HPMA) was utilized to form macroporous cryogel scaffolds for stem cell applications. Furthermore, one group of scaffolds was enhanced by copolymerization of HPMA with methacryoyl-GGGRGDS-OH peptide in an effort to integrate biomimetic adhesion sites. The cryogels were characterized by stiffness and equilibrium swelling measurements as well as by scanning electron microscopy. Cell culture experiments were performed with human adipose-derived stem cells and substrates were found completely non-toxic. Moreover, RGDS-enriched cryogels supported cell attachment, spreading and proliferation, so they can be considered suitable for designed aims., A. Golunova, J. Jaroš, V. Jurtíková, I. Kotelnikov, J. Kotek, H. Hlídková, L. Streit, A. Hampl, F. Rypáček, V. Proks., and Obsahuje bibliografii
Meconium aspiration syndrome (MAS) is meconium-induced respiratory failure of newborns associated with activation of inflammatory and oxidative pathways. For severe MAS, exogenous surfactant treatment is used which improves respiratory functions but does not treat the inflammation. Oxidative process can lead to later surfactant inactivation; hence, surfactant combination with antioxidative agent may enhance the therapeutic effect. Young New Zealand rabbits were instilled by meconium suspension and treated by surfactant alone, Nacetylcysteine (NAC) alone or by their combination and oxygenventilated for 5 h. Blood samples were taken before and 30 min after meconium application and 30 min, 1, 3 and 5 h after the treatment for evaluating of oxidative damage, total leukocyte count, leukocyte differential count and respiratory parameters. Leukocyte differential was assessed also in bronchoalveolar lavage fluid. NAC alone had only mild therapeutic effect on MAS. However, the combination of NAC and surfactant facilitated rapid onset of therapeutic effect in respiratory parameters (oxygenation index, PaO2/FiO2) compared to surfactant alone and was the only treatment which prevented neutrophil migration into the lungs, oxidative damage and lung edema. Moreover, NAC suppressed IL-8 and IL-β formation and thus seems to be favorable agent for improving surfactant therapy in MAS., J. Kopincová, D. Mokrá, P. Mikolka, M. Kolomazník, A. Čalkovská., and Obsahuje bibliografii
An interaction between N-methyl-D-aspartate (NMDA) and MK-801 was examined in mice using a modified elevated plus-maze paradigm that allows assessment of the adaptive form of spatial memory. NMDA administered (s.c.) immediately after the acquisition session protected the animals against the amnesia induced by MK-801 given shortly before the retention session. Behavioral performance, expressed as the transfer latency, and therefore spatial memory potency of NMDA plus MK-801 treated animals was comparable with that of both NMDA-treated animals and the controls., Z. Hliňák, I. Krejčí., and Obsahuje bibliografii
Hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play an important role in brain control of blood pressure (BP). One of the important mechanisms involved in the pathogenesis of hypertension is the elevation of reactive oxygen species (ROS) production by nicotine adenine dinucleotide phosphate (NADPH) oxidase. The aim of our present study was to investigate NADPH oxidase -mediated superoxide (O 2 - ) production and to search for the signs of lipid peroxidation in hypothalamus and medulla oblongata as well as in renal medulla and cortex of hypertensive male rats transgenic for the murine Ren -2 renin gene (Ren -2 TGR) and their age -matched normotensive controls ‒ Hannover Sprague Dawley rats (HanSD) . We found no difference in the activity of NADPH oxidase measured as a lucigenin -mediated O 2 - production in the hypothalamus and medulla oblongata. However, we observed significantly elevated NADPH oxidase in both renal cortex and medulla of Ren -2 TGR com pared with HanSD. Losartan (LOS) treatment (10 mg/kg body weight/day) for 2 months (Ren -2 TGR+LOS) did not change NADPH oxidase -dependent O 2 - production in the kidney. We detected significantly elevated indirect m arkers of lipid peroxidation measured as th iobarbituric acid -reactive substance s (TBARS) in Ren -2 TGR, while they were significantly decreased in Ren -2 TGR +LOS. In conclusion, the present study shows increased NADPH oxidase activities in renal cortex and medulla with significantly increased TBARS in renal cortex. No significant changes of NADPH oxidase and markers of lipid peroxidation were detected in the studied brain regions., M. Vokurková, H. Rauchová, L. Řezáčová, I. Vaněčková, J. Zicha., and Obsahuje bibliografii
Different strategies have been developed in the last decade to obtain fat grafts as rich as possible of mesenchymal stem cells, so exploiting their regenerative potential. Recently, a new kind of fat grafting, called "nanofat", has been obtained after several steps of fat emulsification and filtration. The final liquid suspension, virtually devoid of mature adipocytes, would improve tissue repair because of the presence of adipose mesenchymal stem cells (ASCs). However, since it is probable that many ASCs may be lost in the numerous phases of this procedure, we describe here a novel version of fat grafting, which we call "nanofat 2.0", likely richer in ASCs, obtained avoiding the final phases of the nanofat protocol. The viability, the density and proliferation rate of ASCs in nanofat 2.0 sample were compared with samples of nanofat and simple lipoaspirate. Although the density of ASCs was initially higher in lipoaspirate sample, the higher proliferation rate of cells in nanofat 2.0 virtually filled the gap within 8 days. By contrast, the density of ASCs in nanofat sample was the poorest at any time. Results show that nanofat 2.0 emulsion is considerably rich in stem cells, featuring a marked proliferation capability., D. Lo Furno, S. Tamburino, G. Mannino, E. Gili, G. Lombardo, M. S. Tarico, C. Vancheri, R. Giuffrida, R. E. Perrotta., and Obsahuje bibliografii