We investigated the photosynthetic characteristics of Chorispora bungeana under conditions of drought stress caused by different concentrations of polyethylene glycol-6000 (PEG; 0, 5, 20, and 40%) and various concentrations of exogenous glycine (0, 5, 10, and 20 mM) with 20% PEG. We showed that moderate and severe drought stress of PEG reduced the chlorophyll (Chl) content (both Chl a and b), maximal quantum yield of PSII photochemistry (Fv/Fm), actual photochemical efficiency of PSII in light (YII), and quantum yield of regulated energy dissipation (YNPQ), while Chl a/b and quantum yield of nonregulated energy dissipation (YNO) increased. The low and moderate drought stress increased Mg2+ and Fe3+ contents, while a decrease in Mg2+ and Fe3+ was found under severe drought stress. Compared to sole PEG stress, the addition of exogenous 10 mM glycine increased Chl, Mg2+ and Fe3+ contents, Fv/Fm, YII, and YNPQ, and reduced YNO. On the contrary, 20 mM glycine showed an opposite effect, except for YNO. Our results proved that Chl contents and fluorescence parameters are reliable indicators for drought tolerance of C. bungeana. We suggest that a proper glycine content can relieve the effect of drought stress on C. bungeana., N. Yang, C.-L. Wang, W.-P. He, Y.-Z. Qu, Y.-S. Li., and Seznam literatury
Photosynthesis is amongst the plant cell functions that are highly sensitive to any type of changes. Sun and shade conditions are prevalent in fields as well as dense forests. Dense forests face extreme sun and shade conditions, and plants adapt themselves accordingly. Sun flecks cause changes in plant metabolic processes. In the field, plants have to face high light intensity and survive under such conditions. Sun and shade type of plants develops a respective type of chloroplasts which help plants to survive and perform photosynthesis under adverse conditions. PSII and Rubisco behave differently under different sun and shade conditions. In this review, morphological, physiological, and biochemical changes under conditions of sun (high light) and shade (low light) on the process of photosynthesis, as well as the tolerance and adaptive mechanisms involved for the same, were summarized., S. Mathur, L. Jain, A. Jajoo., and Obsahuje bibliografické odkazy
Limitations in photosystem function and photosynthetic electron flow were investigated during leaf senescence in two field-grown plants, i.e., Euphorbia dendroides L. and Morus alba L., a summer- and winter-deciduous, shrub and tree, respectively. Analysis of fast chlorophyll (Chl) a fluorescence transients and post-illumination fluorescence yield increase were used to assess photosynthetic properties at various stages of senescence, the latter judged from the extent of Chl loss. In both plants, the yield of primary photochemistry of PSII and the content of PSI remained quite stable up to the last stages of senescence, when leaves were almost yellow. However, the potential for linear electron flow along PSII was limited much earlier, especially in E. dendroides, by an apparent inactivation of the oxygen-evolving complex and a lower efficiency of electron transfer to intermediate carriers. On the contrary, the corresponding efficiency of electron transfer from intermediate carriers to final acceptors of PSI was increased. In addition, cyclic electron flow around PSI was accelerated with the progress of senescence in E. dendroides, while a corresponding trend in M. alba was not statistically significant. However, there was no decrease in PSI activity even at the last stages of senescence. We argue that a switch to cyclic electron flow around PSI during leaf senescence may have the dual role of replenishing the ATP and maintaining a satisfactory nonphotochemical energy quenching, since both are limited by hindered linear electron transfer., C. Kotakis, A. Kyzeridou, Y. Manetas., and Obsahuje bibliografii
Vochysia divergens Pohl is considered to be a flood-adapted, light-demanding pioneer species that has been invading grasslands of the Brazilian Pantanal. In these areas, a successful invasion requires an ability to tolerate physiologically wide fluctuations in surface hydrology and shading induced by a dense cover of grasses and other vegetation. We evaluated how flooding and shading affected the photosynthetic performance of V. divergens saplings by measuring light-saturated gas exchange (net photosynthetic rate, PN; stomatal conductance, gs), and intercellular CO2 (PN/Ci) and photosynthetic photon flux density
(PN/PPFD) response curves over a 61-d field experiment. Shading and flooding reduced significantly light-saturated PN and gs and affected multiple aspects of the leaf gas exchange response of V. divergens to variations in PPFD and CO2. Flooding influenced the physiology of this species more than shading. Given the success of V. divergens at invading and expanding in seasonally flooded areas of the Pantanal, the results were surprising and highlighted the physiological ability of this species to tolerate suboptimal conditions. However, the consistently higher light-saturated PN and gs under nonflooded conditions suggested that the invasive success of V. divergens might not be related to its physiological potential during flooding, but to situations, when flooding recedes during the dry season and soil water availability is adequate. and A. C. Dalmolin ... [et al.].
We compared light-saturated photosynthetic rates and their stomatal limitations among Cryptomeria japonica trees with a similar height but different current growth rates. Although
slow-growing trees had a lower stomatal conductance and a higher carbon isotope ratio in shoots, the stomatal limitations in photosynthesis were not different. Large mesophyll CO2 diffusion resistance contributed to the low photosynthetic rate of the
slow-growing trees., T. Tange ... [et al.]., and Obsahuje bibliografii
Plants are constantly subjected to variations in their surrounding environment, which affect their functioning in different ways. The influence of environmental factors on the physiology of plants depends on several factors including the intensity, duration and frequency of the variation of the external stimulus. Water deficit is one of the main limiting factors for agricultural production worldwide and affects many physiological processes in plants. The aim of this study was to analyse the effects of different rates of induced water deficit on the leaf photosynthetic responses of soybean (Glycine max L.) and cowpea (Vigna unguiculata L.). The plants were subjected to two types of water deficit induction: a rapid induction (RD) by which detached leaves were dehydrated by the exposure to air under controlled conditions and a slow induction (SD) by suspending irrigation under greenhouse conditions. The leaf gas exchange, chlorophyll (Chl) a fluorescence, and relative water content (RWC) were analysed throughout the water-deficit induction. V. unguiculata and G. max demonstrated similar dehydration as the soil water percentage declined under SD, with V. unguiculata showing a greater stomatal sensitivity to reductions in the RWC. V. unguiculata plants were more sensitive to water deficit, as determined by all of the physiological parameters when subjected to RD, and the net photosynthetic rate (PN) was sharply reduced in the early stages of dehydration. After the plants exposed to the SD treatment were rehydrated, V. unguiculata recovered 65% of the PN in relation to the values measured under the control conditions (initial watering state), whereas G. max recovered only 10% of the PN. Thus, the better stomatal control of V. unguiculata could enable the maintenance of the RWC and a more efficient recovery of the PN than G. max., S. C. Bertolli, G. L. Rapchan, and G..M. Souza., and Obsahuje bibliografii
The ecophysiological traits of acacia and eucalypt are important in assessing their suitability for afforestation. We measured the
gas-exchange rate, the leaf dry mass per area (LMA) and the leaf nitrogen content of two acacia and four eucalypt species. Relative to the eucalypts, the acacias had lower leaf net photosynthetic rate
(PN), lower photosynthetic nitrogen-use efficiency (PNUE), higher water-use efficiency (WUE), higher LMA and higher leaf nitrogen per unit area (N area). No clear differences were observed within or between genera in the maximum rate of carboxylation (Vcmax) or the maximum rate of electron transport (Jmax), although these parameters tended to be higher in eucalypts. PNUE and LMA were negatively correlated. We conclude that acacias with higher LMA do not allocate nitrogen efficiently to photosynthetic system, explaining why their PN and PNUE were lower than in eucalypts., E. Novriyanti ... [et al.]., and Obsahuje bibliografii
a1_The Pantanal is the largest wetland in the world with extremely high plant and animal diversity, but large areas have been invaded by Vochysia divergens Pohl (Vochysiaceae), a tree that is native to the Amazon Basin, and Curatella americana L. (Dilleniaceae), a tree that is native to the Brazilian savanna (cerrado). V. divergens is reportedly floodadapted, thus its ability to invade the Pantanal may not be surprising, but the invasion of C. americana is counterintuitive, because this species is adapted to the
well-drained soils of the cerrado. Thus, we were interested in comparing the photosynthetic capacity, in terms of CO2 conductance, carboxylation, and electron transport of these species over a seasonal flooding cycle. Given that V. divergens is reportedly flood-adapted, we predicted that this species would have a higher photosynthetic capacity than C. americana, especially under flooding. To test this hypothesis we measured the photosynthetic CO2 response (PN/Cc) of V. divergens and C. americana within 1 year to determine, if photosynthetic capacity varied systematically over time and between species. Contrary to our hypothesis, V. divergens did not always have a higher photosynthetic capacity than C. americana. Rather, species differences were influenced by temporal variations in flooding and the leaf age. Leaf CO2 assimilation and photosynthetic capacity of both species were lower during the flood period, but the differences were not statistically significant. The physiological performance of both species was strongly related to leaf N and P concentrations, but P limitation appeared to be more important than N limitation for these species and ecosystem. Photosynthetic capacity was higher and more stable for V. divergens, but such an advantage did not result in a statistically significant increase in PN., a2_Our results suggest that both species are tolerant to flooding even though they are adapted to very different hydrological conditions. Such physiological plasticity, especially for C. americana, might be a key feature for the ability to survive and persist in the seasonally flooded Pantanal., H. J. Dalmagro ... [et al.]., and Obsahuje bibliografii
In vivo chlorophyll fluorescence analysis reflecting the photosystem II functionality was investigated in the cyanobacterium Anabaena variabilis PCC 7937 under simulated solar radiation in a combination with various cut-off filters (WG 280, WG 295, WG 305, WG 320, WG 335, WG 345, and GG 400) to assess the effects of photosynthetically active radiation (PAR), ultraviolet-A (UV-A), and ultraviolet-B (UV-B) radiations on photosynthesis. The photosynthetic activity (PA) was severely inhibited immediately after 10 min of exposure to high PAR, UV-A, and UV-B radiations compared with low PAR grown control samples. After 1 h of exposure, PA of 17.5 ± 2.9% was detected in the high PAR exposed samples compared with the control, while only a trace or no PA was observed in the presence of ultraviolet radiation (UVR). A recovery of PA was recorded after 2 h of the exposure, which continued for next 4, 8, 12, and 24 h. After 24 h of the exposure, PA of 57.5 ± 1.9%, 36.1 ± 11.7%, 23.5 ± 3.3%, 22.3 ± 5.2%, 20.8 ± 6.7%, 13.2 ± 6.6%, and 21.6 ± 9.5% was observed compared with the control sample in 400, 345, 335, 320, 305, 295, and 280 nm cut-off filters-covered samples, respectively. The relative electron transport rate, measured after 24 h exposure, showed also a disturbance in electron transfer between the two photosystems under the high PAR and UVR treatments relative to the control samples, suggesting the inhibition of photosynthesis. This study suggests that both high PAR and UVR inhibited the photosynthetic performance of A. variabilis PCC 7937 by damaging the photosynthetic apparatus, however, photoprotective mechanisms evolved by the organism allowed an immediate repair of ecologically important machinery, and enabled its survival., S. P. Singh ... [et al.]., and Obsahuje bibliografii
Salt stress causes extensive losses to agricultural crops, including wheat, throughout the world and has been the focus of wide research. Though, information is scarce on the potential of ancient wheat relatives in tackling this major limiting factor. Thus, six hulled tetraploid wheat genotypes (HW) were compared to a
free-threshing durum wheat genotype (FTW) under different NaCl concentrations, ranging from 0 to 150 mM, at early growth stages in a sand culture experiment. Salt stress induced significant declines in the leaf chlorophyll (Chl) a, Chl b, total Chl, and carotentoid contents; the extent of the declines was greater in FTW compared to HW. Mean leaf proline (3.6-fold) and Na+ (1.58-fold) concentrations and Na+/K+ (2.48-fold) drastically increased with 150 mM of NaCl; the magnitude of the increases was greater in HW compared to FTW. While the carotenoids concentration decreased with progressive salinity both in HW and FTW, the activities of antioxidant enzymes, i.e., catalase, ascorbate peroxidase, and peroxidase were reduced in FTW, but remained unchanged in HW. The above responses to 150 mM NaCl were associated with a significant decrease in shoot dry mass of FTW and lack of significant changes in that of HW. Findings of the present study could help pave the way for further studies on physiological and molecular mechanisms of salt tolerance in these durum wheat relatives., S. Tabatabaei, P. Ehsanzadeh., and Seznam literatury