In the field, supplemental application of N fertilizer to rice (Oryza sativa) shortly before the beginning of heading stage increases leaf N content and enhances photosynthesis during the grain-filling period. In search of varietal differences in leaf gas exchange in response to supplemental N application, we examined 13 rice varieties grown in the field during two successive years. The varieties included japonica and indica varieties, both of which are widely grown in Japan. The response to supplemental N application could not be separated clearly between variety groups; some of the japonica varieties, but none of the indica varieties, exhibited significant increase in stomatal conductance (gs) after supplemental N application. Supplemental N was more effective to increase stomatal aperture in the varieties with inherently lower gs. Varieties that showed greater response of g s to supplemental N application might be able to adjust their stomatal aperture with appropriate N control. Although the internal-to-ambient CO2 mole fraction ratio and the leaf carbon isotopic composition (δ13C) differed among varieties as a result of variations in stomatal aperture and the CO2 requirement of mesophyll, supplemental N application barely influenced these parameters, because it only moderately affected stomatal aperture. Since δ13C tended to increase with increasing number of days from transplantation to heading stage in japonica varieties, δ13C values were more sensitive to differences in growth rate between years than to N application., S. Shimoda, A. Maruyama., and Obsahuje bibliografii
RNA editing is post-transcriptional modification to RNA molecules. In plants, RNA editing primarily occurs to two energy-producing organelles: plastids and mitochondria. Organelle RNA editing is often viewed as a mechanism of correction to compensate for defects or mutations in haploid organelle genomes. A common type of organelle RNA editing is deamination from cytidine to uridine. Cytidine-to-uridine plastid RNA editing is carried out by the RNA editing complex which consists of at least four types of proteins: pentatricopeptide repeat proteins, RNA editing interacting proteins/multiple organellar RNA editing factors, organelle RNA recognition motif proteins, and organelle zinc-finger proteins. The four types of RNA editing factors work together to carry out RNA editing site recognition, zinc cofactor binding, and cytidine-to-uridine deamination. In addition, three other types of proteins have been found to be important for plastid RNA editing. These additional proteins may play a regulatory or stabilizing role in the RNA editing complex., Y. Lu., and Obsahuje bibliografické odkazy
The aim of this study was to assess the impact of the mitochondrial alternative oxidase (AOX) pathway on energy metabolism in chloroplasts, and evaluate the importance of the AOX in alleviating drought-induced photoinhibition in pepper (Capsicum annuum L.). Inhibition of AOX pathway decreased photosynthesis and increased thermal energy dissipation in plants under normal conditions. It indicated that AOX pathway could influence chloroplast energy metabolism. Drought reduced carbon assimilation. Photoinhibition was caused by excess of absorbed light energy in spite of the increase of thermal energy dissipation and cyclic electron flow around PSI (CEF-PSI). Upregulation of AOX pathway in leaves experiencing drought would play a critical role in protection against photoinhibition by optimization of carbon assimilation and PSII function, which would avoid over-reduction of photosynthetic electron transport chain. However, inhibition of AOX pathway could be compensated by increasing the thermal energy dissipation and CEF-PSI under drought stress, and the compensation of CEF-PSI was especially significant., W. H. Hu, X. H. Yan, Y. He, X. L. Ye., and Obsahuje bibliografii
The present work showed that spider mite-infested leaves placed in the light were more attractive to predatory mites than the infested leaves placed in the dark; furthermore, an increase in the light intensity enhanced this attractiveness. However, the increase of the light intensity did not change the attractiveness of the uninfested leaves to predatory mites. The capacity of cyanide-resistant respiration and the photosynthetic rates of both the infested and uninfested leaves increased with increasing light intensities, whereas the photosystem (PS) II chlorophyll (Chl) fluorescence decreased. The increase of the capacity of cyanide-resistant respiration in the infested leaves was more dramatic than that in the uninfested leaves, whereas the values of photosynthetic rates and Chl fluorescence were lower in the infested leaves than those in the uninfested leaves. Treatment of the infested and uninfested leaves with 1 mM salicylhydroxamic acid (SHAM, an inhibitor of cyanide-resistant respiration) decreased photosynthetic rates and caused further reductions in PSII fluorescence, especially under a higher light intensity. In contrast, the effects of SHAM on PSII fluorescence parameters and photosynthetic rates of the infested leaves were more dramatic than on those of the uninfested leaves. The treatment with SHAM did not significantly change the attractiveness of the infested or uninfested leaves to the predatory mites under all of the light intensities tested. These results indicated that cyanide-resistant respiration was not directly associated with the light-induced attraction of predators to plants, but it could play a role in the protection of photosynthesis. Such role might become relatively more important when photosynthesis is impaired by herbivores infestation. and H. Q. Feng ... [et al.].
Effects of elevated root-zone (RZ) CO2 concentration (RZ [CO2]) and RZ temperature (RZT) on photosynthesis, productivity, nitrate (NO3-), total reduced nitrogen (TRN), total leaf soluble and Rubisco proteins were studied in aeroponically grown lettuce plants in a tropical greenhouse. Three weeks after transplanting, four different RZ [CO2] concentrations (ambient, 360 ppm, and elevated concentrations of 2,000; 10,000; and 50,000 ppm) were imposed on plants at 20°C-RZT or ambient(A)-RZT (24-38°C). Elevated RZ [CO2] resulted in significantly higher light-saturated net photosynthetic rate, but lower light-saturated stomatal conductance. Higher elevated RZ [CO2] also protected plants from both chronic and dynamic photoinhibition (measured by chlorophyll fluorescence Fv/Fm ratio) and reduced leaf water loss. Under each RZ [CO2], all these variables were significantly higher in 20°C-RZT plants than in A-RZT plants. All plants accumulated more biomass at elevated RZ [CO2] than at ambient RZ [CO2]. Greater increases of biomass in roots than in shoots were manifested by lower shoot/root ratios at elevated RZ [CO2]. Although the total biomass was higher at 20°C-RZT, the increase in biomass under elevated RZ [CO2] was greater at A-RZT. Shoot NO3- and TRN concentrations, total leaf soluble and Rubisco protein concentrations were higher in all elevated RZ [CO2] plants than in plants under ambient RZ [CO2] at both RZTs. Under each RZ [CO2], total leaf soluble and Rubisco protein concentrations were significantly higher at 20°C-RZT than at A-RZT. Our results demonstrated that increased P Nmax and productivity under elevated [CO2] was partially due to the alleviation of midday water loss, both dynamic and chronic photoinhibition as well as higher turnover of Calvin cycle with higher Rubisco proteins. and J. He, L. Qin, S. K. Lee.
Salicylic acid (SA) and nitric oxide (NO) form a new group of plant growth substances that cooperatively interact to promote plant growth and productivity. Water deficit (WD) stress is a major limiting factor for photosynthesis, which in turn limits crop yield. However, the mechanism of SA and NO in stimulating photosynthesis has not yet been elucidated. Therefore, in this study, we investigated the SA- and NO-mediated photosynthetic adaptability of maize seedlings to WD in terms of photosynthetic parameters, activities and mRNA levels of CO2 assimilation enzymes. Our results showed that SA alleviated the WD-induced reduction of photosynthetic performance. The activities of Rubisco and Rubisco activase enzymes increased significantly due to SA pretreatment. Moreover, higher transcription rates of Rbc L, ZmRCAα and ZmRCAβ mRNA further confirmed the effects of SA on CO2 assimilation. WD or SA-induced decreases or increases of CO2 assimilation ability were further decreased after c-PTIO addition., R. X. Shao, L. F. Xin, J. M. Guo, H. F. Zheng, J. Mao, X.P. Han, L. Jia, S. J. Jia, C. G. Du, R. Song, Q. H. Yang, R. W. Elmore., and Obsahuje bibliografii
The role of the antioxidant defense system in salt tolerance of Aeluropus littoralis has not been yet reported; therefore in the present study, the changes of catalase (CAT) activity in this halophyte plant was investigated and CAT gene was isolated. The leaves of treated and control plants were harvested at various times, starting 1 day prior to initiating treatment, then periodically at 72-h intervals for 21 days. The data collected showed that CAT activity increased significantly with time in plants treated with 200, 400, and 600 mM NaCl when compared with the control plants. Maximum enzyme activity was observed between the 6th and 12th day at all NaCl concentrations. CAT gene was isolated and cloned via pTZ57R/T cloning vector in Escherichia coli. CAT gene encoded 494 amino acids and had also high homology of 90, 87, 86, and 86% with CAT genes from Zea mays, Oryza sativa, Triticum aestivum, and Hordeum vulgare, respectively. and M. Modarresi, G. A. Nematzadeh, F. Moradian.
Ecosystem photosynthetic characteristics are of utmost importance for the estimation of regional carbon budget, but such characteristics are not well understood in alpine regions. We collected CO2 flux data measured by eddy covariance technique over an alpine dwarf shrubland on the Qinghai-Tibetan Plateau during years 2003-2010; and we quantified the temporal patterns of ecosystem apparent quantum yield (a), saturated photosynthetic rate (Pmax), and ecosystem dark respiration (RDe). Results showed that the strong seasonality of a and RDe was driven mainly by air temperature (Ta), whereas that of Pmax was much more determined by leaf area index rather than abiotic factors. Diurnal thermal fluctuation inhibited significantly the daytime photosynthetic capacity. Stepwise regression revealed that the seasonal deviations of a, Pmax, and RDe were significantly controlled by Ta. The annual a was regulated mainly by annual growing season Ta, which indicated that the response of ecosystem a was instant. The annual variations of Pmax correlated positively with soil temperature 5 cm below ground (Ts) of the annual nongrowing season and those of RDe related negatively with the annual nongrowing season precipitation. We suggested that a lagged response regulated the annual Pmax and the annual RDe. Annual deviations of a and RDe were both significantly controlled by annual Ts, and those of Pmax were marginally determined by annual PPFD. Thus, the future warming scenario, especially significant for nongrowing seasonal warming in the Qinghai-Tibetan Plateau, would favor ecosystem photosynthetic capacity in the alpine dwarf shrubland., H. Q. Li, F. W. Zhang, Y. N. LI, G. M. Cao, L. Zhao, X. Q. Zhao., and Obsahuje bibliografii
Seasonal changes in leaf gas exchange, assimilation response to light and leaf area were monitored in bearing and nonbearing pistachio shoots. Shoot bearing status did not directly affect leaf photosynthetic rate. However, photosynthetic light-response curves strongly varied during the season demonstrating the dominant effect of the tree’s seasonal phenology on assimilation. Early in the season low photosynthetic rates were associated with high rates of dark respiration indicating limited photosynthesis in the young leaves. As leaves matured, dark respiration decreased and assimilation reached maximum values. Photosynthetic efficiency was strongly reduced late in the season due to leaf age and senescence. Fruit load precipitated an early leaf senescence and drop that resulted in a 53% decrease in leaf area in bearing vs. nonbearing shoots, strongly decreasing the seasonal photosynthetic performance of bearing shoots. Bearing shoots produced a 26% lower seasonal carbon gain compared to nonbearing shoots., G. Marino, M. La Mantia, T. Caruso, F. P. Marra., and Obsahuje bibliografii