The effects of exercise on mechanical hyperalgesia, joint contracture, and muscle injury resulting from immobilization are not completely understood. This study aimed to investigate the effects of cyclic stretching on these parameters in a rat model of chronic post-cast pain (CPCP). Seventeen 8-week-old Wistar rats were randomly assigned to (1) control group, (2) immobilization (CPCP) group, or (3) immobilization and stretching exercise (CPCP+STR) group. In the CPCP and CPCP+STR groups, both hindlimbs of each rat were immobilized in full plantar flexion with a plaster cast for a 4-week period. In the CPCP+STR group, cyclic stretching exercise was performed 6 days/week for 2 weeks, beginning immediately after cast removal prior to reloading. Although mechanical hyperalgesia in the plantar skin and calf muscle, ankle joint contracture, and gastrocnemius muscle injury were observed in both immobilized groups, these changes were significantly less severe in the CPCP+STR group than in the CPCP group. These results clearly demonstrate the beneficial effect of cyclic stretching exercises on widespread mechanical hyperalgesia, joint contracture, and muscle injury in a rat model of CPCP., Kazuhiro Hayashi, Saori Fukuyasu-Matsuo, Takayuki Inoue, Mitsuhiro Fujiwara, Yuji Asai, Masahiro Iwata, Shigeyuki Suzuki., and Obsahuje bibliografii
Hypertension is a major health problem throughout the world because of its high prevalence and its association with increased risk of cardiovascular disease. Two independent studies discovered a locus conferring susceptibility to essential hypertension on chromosome 2, in the 2p25 region, but the causative gene remains unknown. Grainyhead-like 1 (GRHL1) is one of the genes located in this region. Our experiments determined that the Grhl1-null mice, when fed standard diet, have the same blood pressure as their wild type littermate controls. However, we discovered that blood pressure of these mice increases following high sodium diet and decreases when they are fed low sodium diet, and similar effect s were not observed in the control wild type littermates. This suggests that the Grhl1-null mice are sensitive to the development of salt-sensitive hypertension. Thus it is possible that the GRHL1 gene is involved in the regulation of blood pressure, and it may be the causative gene for the locus of susceptibility to essential hypertension in the 2p25 region., A. Walkowska, M. Pawlak, S. M. Jane, E. Kompanowska-Jezierska, T. Wilanowski., and Obsahuje bibliografii
The present experiments were performed to evaluate if increased heart tissue concentration of fatty acids, specifically myristic, palmitic and palmitoleic acids that are believed to promote physiological heart growth, can attenuate the progression of unloading-induced cardiac atrophy in rats with healthy and failing hearts. Heterotopic abdominal heart transplantation (HTx) was used as a model for heart unloading. Cardiac atrophy was assessed from the ratio of the native- to-transplanted heart weight (HW). The degree of cardiac atrophy after HTx was determined on days 7, 14, 21 and 28 after HTx in recipients of either healthy or failing hearts. HTx of healthy hearts resulted in 23±3, 46±3, 48±4 and 46±4 % HW loss at the four time-points. HTx of the failing heart resulted in even greater HW losses, of 46±4, 58±3, 66±2 and 68±4 %, respectively (P<0.05). Activation of “fetal gene cardiac program” (e.g. beta myosin heavy chain gene expression) and “genes reflecting cardiac remodeling” (e.g. atrial natriuretic peptide gene expression) after HTx was greater in failing than in healthy hearts (P<0.05 each time). Exposure to isocaloric high sugar diet caused significant increases in fatty acid concentrations in healthy and in failing hearts. However, these increases were not associated with any change in the course of cardiac atrophy, similarly in healthy and post-HTx failing hearts. We conclude that increasing heart tissue concentrations of the fatty acids allegedly involved in heart growth does not attenuate the unloading-induced cardiac atrophy., M. Pokorný, I. Mrázová, J. Malý, J. Pirk, I. Netuka, Z. Vaňourková, Š. Doleželová, L. Červenková, H. Maxová, V. Melenovský, J. Šochman, J. Sadowski, L. Červenka., and Seznam literatury
Pioglitazone (PIO) is a thiazolidindione antidiabetic agent which improves insulin sensitivity and reduces blood glucose in experimental animals and treated patients. At the cellular level the actions of PIO in diabetic heart are poorly understood. A previous study has demonstrated shortened action potential duration and inhibition of a variety of transmembrane currents including L-type Ca2+ current in normal canine ventricular myocytes. The effects of PIO on shortening and calcium transport in ventricular myocytes from the Goto-Kakizaki (GK) type 2 diabetic rat have been investigated. 10 min exposure to PIO (0.1-10 μM) reduced the amplitude of shortening to similar extents in ventricular myocytes from GK and control rats. 1 μM PIO reduced the amplitude of the Ca2+ transients to similar extents in ventricular myocytes from GK and control rats. Caffeine-induced Ca2+ release from the sarcoplasmic reticulum and recovery of Ca2+ transients following application of caffeine and myofilament sensitivity to Ca2+ were not significantly altered in ventricular myocytes from GK and control rats. Amplitude of L-type Ca2+ current was not significantly decreased in myocytes from GK compared to control rats and by PIO treatment. The negative inotropic effects of PIO may be attributed to a reduction in the amplitude of the Ca2+ transient however, the mechanisms remain to be resolved., K. A. Salem, V. Sydorenko, M. Qureshi, M. Oz, F. C. Howarth., and Seznam literatury
Arterial compliance (AC) is an index of the elasticity of large arteries. Endothelial dysfunction has been reported to result in reduced arterial compliance, which represents increased arterial stiffness. A reduction in AC is elicited by high-intensity resistance training, however the mechanisms are obscure. Because a single bout of resistance exercise causes a transient increase in circulating plasma endothelin-1 in humans, some vasoconstrictors may play a role in the mechanisms. The present study aimed to investigate whether resistance training-induced decrease in AC is associated with changes in circulating vasoconstrictors levels in young men. Young sedentary men were assigned to control (n=5) or training (n=9) groups. The training group performed four-week high-intensity resistance training (weight training exercise; three sessions/week). We measured AC and plasma levels of endothelin-1, angiotensin II, and norepinephrine before and after intervention. Resistance training significantly decreased AC, whereas the changes in plasma levels of neither endothelin-1, nor angiotensin II, nor norepinephrine were significantly different between the control and the training groups. Moreover, we found no significant correlations between changes in circulating plasma levels (endothelin-1, angiotensin II, and norepinephrine) and in the AC. Despite of no alteration of the resting circulating plasma levels (endothelin-1, etc.), we cannot exclude a possibility that the tissue/local concentrations of vasoconstrictors (endothelin-1, etc.) around the vessels might be increased and also involved in a reduction of AC in the training group. Taken together, the present results suggest that circulating vasoconstrictors (endothelin-1, etc.) in plasma are not involved in a reduction in AC by the resistance training., K. Tagawa, S.-G. Ra, H. Kumagai, T. Yoshikawa, Y. Yoshida, K. Takekoshi, S. Sakai, T. Miyauchi, S. Maeda., and Seznam literatury
Acute lung injury (ALI) is associated with det erioration of alveolar-capillary lining and transmigration and activation of inflammatory cells. Whereas a selective phosphodiesterase-4 (PDE4) inhibitor roflumilast has exerted potent anti-inflammatory properties, this study evaluated if its intravenous delivery can influence inflammation, edema formation, and respiratory parameters in rabbits with a lavage-induced model of ALI. ALI was induced by repetitive saline lung lavage (30 ml/kg). Animals were divided into 3 groups: ALI without therapy (ALI), ALI treated with roflumilast i.v. (1 mg/kg; ALI+Rofl), and healthy ventilated controls (Control), and were ventilated for following 4 h. Respiratory parameters (blood gases, ventilatory pressures, lung compliance, oxygenation indexes etc.) were measured and ca lculated regularly. At the end of experiment, animals were overdosed by anesthetics. Total and differential counts of cells in bronchoalveolar lavage fluid (BAL) were estimated microscopically. Lung edema was expressed as wet/dry lung weight ratio. Treatment with roflumilast reduced leak of cells (P<0.01), particularly of neutrophils (P<0.001), into the lung, decreased lung edema formation (P<0.01), and improved respiratory parameters. Concluding, the results indicate a future potential of PDE4 inhibitors also in the therapy of ALI., P. Kosutova, P. Mikolka, M. Kolomaznik, S. Rezakova, A. Calkovska, D. Mokra., and Obsahuje bibliografii
To evaluate the preclinical efficacy and safety of human mesenchymal stem cells (hMSC) rapidly expanded in growth medium for clinical use with human se rum and recombinant growth factors, we conducted a controlled, randomized trial of plasma clots with hMSC vs. plasma clots only in critical segmental femoral defects in rnu/rnu immunodeficient rats. X-ray, microCT and histomorphometrical evaluation were pe rformed at 8 and 16 weeks. MSC were obtained from healthy volunteers and patients with lymphoid malignancy. Human MSC survived in the defect for the entire duration of the trial. MSC from healthy volunteers, in contrast to hMSC from cancer patients, significantly improved bone healing at 8, but not 16 weeks. However, at 16 weeks, hMSC significantly improved vasculogenesis in residual defect. We conclude that hMSC from healthy donors significantly contributed to the healing of bone defects at 8 weeks and to the vascularisation of residual connective tissue for up to 16 weeks. We found the administration of hMSC to be safe, as no adverse reaction to human cells at the site of implantation and no evidence of migration of hMSC to distant organs was detected., R. Pytlík, C. Rentsch, T. Soukup, L. Novotný, B. Rentsch, V. Kanderová, H. Rychtrmocová, M. Kalmárová, D. Stehlík, M. Trněný, O. Slanař., and Obsahuje bibliografii
Diabetes mellitus (DM) has been known for many years to be associated with poor cardiovascular prognosis. Due to the sensitive neuropathy, the coronary artery disease in diabetic patients is frequently asymptomatic. Also twelve leads resting ECG can be within normal limits even in an advanced stage of coronary artery disease. Therefore in addition to the standard ECG other electrocardiographic procedures started to be studied in order to find some typical signs of myocardial damages caused by DM. Repeatedly reported results showed in DM patients without cardiovascular complications the tachycardia, shortening of the QRS and QT intervals, increase of the dispersion of QT interval, decreased amplitudes of depolarization waves, shortened activation time of ventricular myocardium and a flattening of T waves confirmed by the lower value of maximum and minimum in repolarization body surface isopotential maps. Most of these changes are even more pronounced in patients with cardiac autonomic neuropathy. Comparison with similar ECG changes in other diseases suggests that the electrocardiographic changes in DM patients are not specific and that they are particularly caused by an increased tone of the sympathetic nervous system what was indirectly confirmed by the heart rate variability findings in these patients., O. Kittnar., and Obsahuje bibliografii
Anthropogenic environmental pollutants affect many physiological, biochemical, and endocrine actions as reproduction, metabolism, immunity, behavior and as such can interfere with any aspect of hormone action. Microbiota and their genes, microbiome, a large body of microorganisms, first of all bacteria and co-existing in the host´s gut, are now believed to be autonomous endocrine organ, participating at overall endocrine, neuroendocrine and immunoendocrine regulations. While an extensive literature is available on the physiological and pathological aspects of both players, information about their mutual relationships is scarce. In the review we attempted to show various examples where both, endocrine disruptors and microbiota are meeting and can act cooperatively or in opposition and to show the mechanism, if known, staying behind these actions., Richard Hampl, Luboslav Stárka., and Obsahuje bibliografii
After menopause, when estrogen levels decrease, there is room for the activity of anthropogenic substances with estrogenic properties - endocrine disruptors (EDs) - that can interfere with bone remodeling and changes in calcium-phosphate metabolism. Selected unconjugated EDs of the bisphenol group - BPA, BPS, BPF, BPAF, and the paraben family - methyl-, ethyl-, propyl-, butyl-, and benzyl-parabens - were measured by high performance liquid chromatography-tandem mass spectrometry in the plasma of 24 postmenopausal women. Parameters of calcium-phosphate metabolism and bone mineral density were assessed. Osteoporosis was classified in 14 women, and 10 women were put into the control group. The impact of EDs on calcium-phosphate metabolism was evaluated by multiple linear regressions. In women with osteoporosis, concentrations of BPA ranged from the lower limit of quantification (LLOQ) - 104 pg/ml and methyl paraben (MP) from LLOQ - 1120 pg/ml. The alternative bisphenols BPS, BPF and BPAF were all under the LLOQ. Except for MP, no further parabens were detected in the majority of samples. The multiple linear regression model found a positive association of BPA (β=0.07, p<0.05) on calcium (Ca) concentrations. Furthermore, MP (β=-0.232, p<0.05) was negatively associated with C-terminal telopeptide. These preliminary results suggest that these EDs may have effects on calcium-phosphate metabolism., J. Vitku, L. Kolatorova, L. Franekova, J. Blahos, M. Simkova, M. Duskova, T. Skodova, L. Starka., and Obsahuje bibliografii