This submission contains trained end-to-end models for the Neural Monkey toolkit for Czech and English, solving three NLP tasks: machine translation, image captioning, and sentiment analysis.
The models are trained on standard datasets and achieve state-of-the-art or near state-of-the-art performance in the tasks.
The models are described in the accompanying paper.
The same models can also be invoked via the online demo: https://ufal.mff.cuni.cz/grants/lsd
There are several separate ZIP archives here, each containing one model solving one of the tasks for one language.
To use a model, you first need to install Neural Monkey: https://github.com/ufal/neuralmonkey
To ensure correct functioning of the model, please use the exact version of Neural Monkey specified by the commit hash stored in the 'git_commit' file in the model directory.
Each model directory contains a 'run.ini' Neural Monkey configuration file, to be used to run the model. See the Neural Monkey documentation to learn how to do that (you may need to update some paths to correspond to your filesystem organization).
The 'experiment.ini' file, which was used to train the model, is also included.
Then there are files containing the model itself, files containing the input and output vocabularies, etc.
For the sentiment analyzers, you should tokenize your input data using the Moses tokenizer: https://pypi.org/project/mosestokenizer/
For the machine translation, you do not need to tokenize the data, as this is done by the model.
For image captioning, you need to:
- download a trained ResNet: http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz
- clone the git repository with TensorFlow models: https://github.com/tensorflow/models
- preprocess the input images with the Neural Monkey 'scripts/imagenet_features.py' script (https://github.com/ufal/neuralmonkey/blob/master/scripts/imagenet_features.py) -- you need to specify the path to ResNet and to the TensorFlow models to this script
Feel free to contact the authors of this submission in case you run into problems!
This submission contains trained end-to-end models for the Neural Monkey toolkit for Czech and English, solving four NLP tasks: machine translation, image captioning, sentiment analysis, and summarization.
The models are trained on standard datasets and achieve state-of-the-art or near state-of-the-art performance in the tasks.
The models are described in the accompanying paper.
The same models can also be invoked via the online demo: https://ufal.mff.cuni.cz/grants/lsd
In addition to the models presented in the referenced paper (developed and published in 2018), we include models for automatic news summarization for Czech and English developed in 2019. The Czech models were trained using the SumeCzech dataset (https://www.aclweb.org/anthology/L18-1551.pdf), the English models were trained using the CNN-Daily Mail corpus (https://arxiv.org/pdf/1704.04368.pdf) using the standard recurrent sequence-to-sequence architecture.
There are several separate ZIP archives here, each containing one model solving one of the tasks for one language.
To use a model, you first need to install Neural Monkey: https://github.com/ufal/neuralmonkey
To ensure correct functioning of the model, please use the exact version of Neural Monkey specified by the commit hash stored in the 'git_commit' file in the model directory.
Each model directory contains a 'run.ini' Neural Monkey configuration file, to be used to run the model. See the Neural Monkey documentation to learn how to do that (you may need to update some paths to correspond to your filesystem organization).
The 'experiment.ini' file, which was used to train the model, is also included.
Then there are files containing the model itself, files containing the input and output vocabularies, etc.
For the sentiment analyzers, you should tokenize your input data using the Moses tokenizer: https://pypi.org/project/mosestokenizer/
For the machine translation, you do not need to tokenize the data, as this is done by the model.
For image captioning, you need to:
- download a trained ResNet: http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz
- clone the git repository with TensorFlow models: https://github.com/tensorflow/models
- preprocess the input images with the Neural Monkey 'scripts/imagenet_features.py' script (https://github.com/ufal/neuralmonkey/blob/master/scripts/imagenet_features.py) -- you need to specify the path to ResNet and to the TensorFlow models to this script
The summarization models require input that is tokenized with Moses Tokenizer (https://github.com/alvations/sacremoses) and lower-cased.
Feel free to contact the authors of this submission in case you run into problems!
The Czech Legal Text Treebank 2.0 (CLTT 2.0) annotates the same texts as the CLTT 1.0. These texts come from the legal domain and they are manually syntactically annotated. The CLTT 2.0 annotation on the syntactic layer is more elaborate than in the CLTT 1.0 from various aspects. In addition, new annotation layers were added to the data: (i) the layer of accounting entities, and (ii) the layer of semantic entity relations.
This entry contains the SumeCzech dataset and the metric RougeRAW used for evaluation. Both the dataset and the metric are described in the paper "SumeCzech: Large Czech News-Based Summarization Dataset" by Milan Straka et al.
The dataset is distributed as a set of Python scripts which download the raw HTML pages from CommonCrawl and then process them into the required format.
The MPL 2.0 license applies to the scripts downloading the dataset and to the RougeRAW implementation.
Note: sumeczech-1.0-update-230225.zip is the updated release of the SumeCzech download script, including the original RougeRAW evaluation metric. The download script was modified to use the updated CommonCraw download URL and to support Python 3.10 and Python 3.11. However, the downloaded dataset is still exactly the same. The original archive sumeczech-1.0.zip was renamed to sumeczech-1.0-obsolete-180213.zip and is kept for reference.
A simple way of browsing CoNLL format files in your terminal. Fast and text-based.
To open a CoNLL file, simply run: ./view_conll sample.conll
The output is piped through less, so you can use less commands to navigate the
file; by default the less searches for sentence beginnings, so you can use "n"
to go to next sentence and "N" to go to previous sentence. Close by "q". Trees
with a high number of non-projective edges may be difficult to read, as I have
not found a good way of displaying them intelligibly.
If you are on Windows and don't have less (but have Python), run like this: python view_conll.py sample.conll
For complete instructions, see the README file.
You need Python 2 to run the viewer.
Tokenizer, POS Tagger, Lemmatizer and Parser models for all 50 languages of Universal Depenencies 2.0 Treebanks, created solely using UD 2.0 data (http://hdl.handle.net/11234/1-1983). The model documentation including performance can be found at http://ufal.mff.cuni.cz/udpipe/users-manual#universal_dependencies_20_models .
To use these models, you need UDPipe binary version at least 1.2, which you can download from http://ufal.mff.cuni.cz/udpipe .
In addition to models itself, all additional data and value of hyperparameters used for training are available in the second archive, allowing reproducible training.
Universal Derivations (UDer) is a collection of harmonized lexical networks capturing word-formation, especially derivational relations, in a cross-linguistically consistent annotation scheme for many languages. The annotation scheme is based on a rooted tree data structure, in which nodes correspond to lexemes, while edges represent derivational relations or compounding.
The current version of the UDer collection contains eleven harmonized resources covering eleven different languages.
Universal Segmentations (UniSegments) is a collection of lexical resources capturing morphological segmentations harmonised into a cross-linguistically consistent annotation scheme for many languages. The annotation scheme consists of simple tab-separated columns that stores a word and its morphological segmentations, including pieces of information about the word and the segmented units, e.g., part-of-speech categories, type of morphs/morphemes etc. The current public version of the collection contains 38 harmonised segmentation datasets covering 30 different languages.