Muscle phenotype is determined by combined effects of intrinsic genetic and extrinsic factors like innervation, hormonal levels and mechanical factors or muscle activity. We have been studying the effect of altered thyroid hormone levels on the expression of myosin heavy chain (MyHC) isoforms in control and regenerating soleus and extensor
digitorum longus muscles of euthyroid, hypothyroid or hyperthyroid female inbred Lewis rats. The fiber type composition has been determined according to the mATPase activity and immunocytochemical staining of MyHC isoforms, the content of MyHC isoforms has been determined by SDS-PAGE, the mRNA levels have been measured by RT-PCR and the ultrastructural transformation has been analyzed by electron-microscopy. Our results indicate that although the innervation plays a decisive role in the determination of muscle phenotype, levels of thyroid hormones contribute to the extent of muscle phenotype transformation.
Skeletal muscles of small rodents contain four main fiber types, namely type 1, 2A, 2X/D and 2B fibers containing myosin heavy chain (MyHC) 1, 2a, 2x/d and 2b isoforms. Each of these MyHC isoforms is the product of a distinct gene and their expression is believed to be primarily transcriptionally controlled. In most rat muscles, messenger RNA (mRNA) transcripts for MyHC1, 2a, 2x/d and 2b and their corresponding protein products were found with the exception of the soleus muscle, where typically only MyHC1 and 2a transcripts and protein isoforms were demonstrated under normal conditions. Here we show the expression of all four MyHC1, 2a, 2x/d and 2b mRNA transcripts in the soleus muscle under normal conditions in euthyroid, as well as in experimental hypothyroid and hyperthyroid (with the exception of 2b MyHC transcript) 7-month-old female inbred Lewis rats. This is not matched, however, by the appearance of corresponding four isoforms, as we have found that 2x/d and 2b protein isoforms are not present at levels detectable by SDS-PAGE. We also show that the chronic hypothyroid and hyperthyroid status affects the expression of MyHC isoforms both at the mRNA and protein levels.
To reveal the effect of foreign innervation and altered thyroid status on fiber type composition and the myosin heavy chain (MyHC) isoform expression in the rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles, a method of heterochronous isotransplantation was developed. In this experimental procedure, the SOL or EDL muscles of young inbred Lewis rats are grafted either into the host EDL or SOL muscles of adult rats of the same strain with normal or experimentally altered thyroid status. To estimate the extent of fiber type transitions in the transplanted muscles, the SOL and EDL muscle from the unoperated leg and unoperated muscles from the operated leg could be legitimately used as controls, but only when the experimental procedure itself does not affect these muscles. To verify this assumption, we have compared the fiber type composition and the MyHC isoform content of unoperated contralateral SOL and EDL muscles and ipsilateral unoperated SOL muscle of experimental rats after unilateral isotransplantation into the host EDL muscle with corresponding muscles of the naive rats of the same age and strain. We provide compelling evidence that the unilateral heterochronous isotransplantation has no significant effect on the fiber type composition and the MyHC isoform content of unoperated muscles of experimental animals. Hence, these muscles can be used as controls in our grafting experiments.