The use of light traps for controlling insect pests is restricted since they kill both pests and beneficial insects. It may be a possible to reduce the numbers of beneficial insects trapped by adjusting nightly trapping time based on differences recorded in the timing of the nocturnal flight peaks of target pests and beneficials. To test this, insects were collected hourly over night using black light traps at three locations in China from 2003 to 2005. Groups of lepidopteran and coleopteran pests were selected as the target pests that we would control by trapping and groups of beneficial predatory insects the catches of which needed to be reduced. The highest numbers of Coleoptera were caught between 20:00 and 22:00 h and of most Lepidoptera between 02:00 and 04:00 h. The hourly numbers of predatory insects caught by light traps were evenly distributed throughout the night. A model was developed to describe the relationships between the cumulative proportions of insects caught and time of night. The model accurately describes the flight activity of insects that were mainly caught before midnight, after midnight and evenly throughout a night by using different parameters for the three different insect groups. A beneficial-friendly trapping strategy was developed to reduce the numbers of beneficial insects trapped, which was based on differences in the nocturnal flight activity of pests and beneficial insects and validated by a field study in Shandong province. Results show that this trapping strategy reduced the number of beneficial insects caught by 46% and the electricity consumption by 50% compared to the traditional strategy. Thus this strategy is more beneficial-friendly than the traditional trapping strategy for controlling pests., Gang Ma, Chun-Sen Ma., and Obsahuje seznam literatury
Lianas perform better than co-occurring trees in secondary forests or disturbed areas. Lianas and trees differ strikingly in water use strategy, which may result in a significant difference in photosynthetic light use between both growth forms. However, the difference in the photosynthetic efficiency and light energy dissipation between these two growth forms is poorly understood. Moreover, photorespiration is an important mechanism of photoprotection under conditions of high light. In this study, we used Bridelia stipularis (Linn.) Bl. (liana) and Strophioblachia fimbricalyx Boerl. (tree) in order to measure the response curves of the gas exchange and photosynthetic electron flow to the incident light gradients and intercellular CO2 concentration, as well as the hydraulic conductivity. We tested whether the photochemical efficiency and photorespiration differed between both growth forms. Our results clearly demonstrated that B. stipularis possessed a significantly higher stem and leaf specific hydraulic conductivity, total electron flow, and maximum rate of ribulose-1,5-bisphosphate regeneration compared to the sympatric tree S. fimbricalyx. Correspondingly, B. stipularis exhibited a significantly higher photochemical quenching coefficient and electron flow to photorespiration relative to S. fimbricalyx under saturating light levels. We suggested that photorespiration might play an important role in photoprotection for both species under high light, but particularly for B. stipularis. These findings could enrich our knowledge of the superior photosynthetic and growth performance of lianas over the co-occurring trees., S.-B. Zhang, J.-L. Zhang, K.-F. Cao., and Seznam literatury
Plant chemical composition is an important determinant of host plant-insect interactions. For many insects sugars are the main factors determining the acceptability of a plant. This study investigated changes in plant chemical composition and differences in sugar composition of different host plants induced by the feeding of Coccus hesperidum L. (Hemiptera: Sternorrhyncha: Coccoidea). Present in plant extracts and honeydew there were three monosaccharide sugars: glucose, fructose and arabinose, and one disaccharide - sucrose. Arabinose was only found in extracts of Ficus benjamina plants. The sugar content of the honeydew was greater than in the extracts of control plants and lower than that in the extracts of infested plants. The honeydew collected from C. hesperidum feeding on the three plant species differed significantly in sugar content. Extracts of coccid infested plants of the three species used in this study contained more sugar than the un-infested control plants. The results show that honeydew composition of scale insects differ and the differences reflect the chemical composition of the host plants. and Katarzyna Golan, Agnieszka Najda.
a1_Previous studies have focused mainly on the accumulation of photosynthates and less on their distribution in sweet potato (Ipomoea batatas L.). In addition, the effect of photosynthate accumulation in root tubers on photosynthate distribution was not considered. Thus, a field experiment was carried out from May to October (2011 and 2012) to clarify the differences in photosynthate transport between high- and low-yielding sweet potato. This study mainly focused on the photosynthetic capacities of leaves, photosynthate distribution, and characteristics of photosynthate accumulation in root tubers. Results showed the high-yielding varieties displayed the higher fresh root tuber yield and the economic coefficient than the low-yielding varieties. They also showed greater net photosynthetic rate with a pronounced increase at the early and middle growth stages (8.9% and 11.4%, respectively). After the growth peak, the leaf area index (LAI) of the high-yielding varieties decreased with time and was maintained at 2~3 until harvest, whereas the LAI of the low-yielding varieties decreased slowly. The high-yielding varieties reached the 13C distribution rate ≥ 50% at the early (2011, 2012) and middle (2011) growth stages, whereas the low-yielding varieties reached it at the late (2011) or middle (2012) growth stages. At harvest, the 13C distribution rates in the branches and root tubers of the
high-yielding varieties were 6.0-20.3% and 73.7-91.2%, respectively, whereas those of the low-yielding varieties were 29.6-34.7% and 60.7-63.5%, respectively. The high-yielding varieties showed the remarkable initial potential in root tubers, which was much better than that of the low-yielding varieties. The high-yielding varieties also produced heavier root tubers and the higher number of root tubers per plant at the early bulking stage., a2_The root tubers also attained the greater content of soluble sugar and starch. The high-yielding varieties formed root tubers earlier, showed strong abilities to transport photosynthates into the root tubers, and exhibited a higher mean accumulation rate. These varieties could also reduce the photosynthate consumption in branch leaves and stems. Therefore, the high-yielding varieties established growth advantage for the root tubers earlier. It contributed to a reasonable distribution structure of photosynthates that led to the high root tuber yield. Based on our results, effective agricultural measures can be chosen to improve the root tuber yield of sweet potato., H. J. Liu, S. S. Chai, C. Y. Shi, C. J. Wang, G. B. Ren, Y. Jiang, C. C. Si., and Obsahuje seznam literatury
Photosynthetic light curve, chlorophyll (Chl) content, Chl fluorescence parameters, malondialdehyde (MDA) content, phosphoenolpyruvate carboxylase (PEPC) activity and reactive oxygen metabolism were studied under drought stress in two autotetraploid rice lines and corresponding diploid rice lines. Net photosynthetic rate decreased dramatically, especially under severe drought stress and under high photosynthetic active radiation in diploid rice, while it declined less under the same conditions in autotetraploid lines. Compared with the corresponding diploid lines, the Chl content, maximum photochemical efficiency of photosystem (PS) II, and actual photochemical efficiency of PSII were reduced less in autotetraploid lines. PEPC activities were higher in autotetraploid rice lines. PEPC could alleviate inhibition of photosynthesis caused by drought stress. The chromosome-doubling enhanced rice photoinhibition tolerance under drought stress. The lower MDA content and superoxide anion production rate was found in the autotetraploid rice indicating low peroxidation level of cell membranes. At the same time, the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were higher in autotetraploid rice lines. SOD, POD, and CAT could effectively diminish the reactive oxygen species and reduced the membrane lipid peroxidation., P.-M. Yang, Q.-C. Huang, G.-Y. Qin, S.-P. Zhao, J.-G. Zhou., and Obsahuje bibliografii
The objective of the present experiment was to assess the involvement of small intestine in expression of susceptibility or resistance to the high-fat/high-energy diet. The investigation was carried out in adult male Sprague-Dawley rats fed either standard laboratory diet (3.2 kcal/g, 9.5 % fat) or high-fat (HF) diet (4.04 kcal/g, 30 % fat) for 4 weeks as well as in HF rats that were retrospectively designated on the bases of their higher or lower weight gain as sensitive (DIO) or resistant (DR) to obesity. Our results revealed in HF group significant increase in energy intake, food efficiency, weight gain and Lee´s index of obesity. Moreover, in comparison with controls, a significantly increased duodenal and jejunal alkaline phosphatase (AP) and α-glucosidase activity as well as hypertrophy of jejunal mucosa (increased protein/DNA ratio) were observed in HF fed rats. In contrast, intestinal function was inversely related to energy intake or to the development of adiposity in DIO vs. DR rats. The DR rats had significantly greater AP and α-glucosidase activity and more pronounced suppression of energy intake than obese DIO rats. It indicates that the increase of enzyme activities and the lowered effectiveness of nutrient absorption might be a significant factor preventing the expression of obesity proneness. This information contributes to a better understanding of a complex interaction between HF diet feeding and small intestinal adaptability, which determines the energy homeostasis and predict the ability to resist or develop obesity in these phenotypes., Z. Šefčíková, T. Hájek, Ľ. Lenhardt, Ľ. Raček, Š. Možeš., and Obsahuje bibliografii a bibliografické odkazy
Carbonic anhydrase (CA) catalyzes reversible hydration of CO2 and it can compensate for the lack of H2O and CO2 in plants under stress conditions. Antioxidative enzymes play a key role in scavenging reactive oxygen species and in protecting plant cells against toxic effects. Tomato represents a stress-sensitive plant while violet orychophragmus belongs to adversity-resistant plants. In order to study the drought responses in tomato and violet orychophragmus plants, CA and antioxidative enzyme activities, photosynthetic capacity, and water potential were determined in plants under drought stress. We found that there were similar change trends in CA activity and drought tolerance in violet orychophragmus, and in antioxidative enzymes and drought tolerance in tomato plants. Basic mechanisms of drought resistance should be identified for understanding of breeding measures in plants under stress conditions., W. H. Sun, Y. Y. Wu, X. Y. Wen, S. J. Xiong, H. G. He, Y. Wang, G. Q. Lu., and Obsahuje seznam literatury
This work aimed to study the effects of commercial doses of the fungicide, Mancozeb, on the photosynthetic apparatus of lettuce young leaves (YL) and expanded leaves (EL). Seven days after Mancozeb application, chlorophyll a fluorescence, pigment contents, lipid peroxidation, and proline content were evaluated. Independently of leaf age, Mancozeb treatment reduced the efficiency of photosystem II photochemistry, increased the nonphotochemical quenching and proline content, decreased pigment contents, and induced lipid peroxidation. Moreover, EL showed a more stable photosynthetic apparatus, less prone to oxidative damages compared with YL. The parameters measured proved to be good markers for the rapid and preliminary diagnosis of fungicide toxicity., M. C. Dias, P. Figueiredo, I. F. Duarte, A. M. Gil, C. Santos., and Obsahuje bibliografii
Objective of this study was to characterize osmotically-induced insulin secretion in two tumor cell lines. We compared response of freshly isolated rat pancreatic islets and INS-1 and INS-1E tumor cell lines to high glucose, 30 % hypotonic medium and 20 % hypertonic medium. In Ca2+-containing medium glucose induced insulin release in all three cell types. Hypotonicity induced insulin secretion from islets and INS-1 cells but not from INS-1E cells, in which secretion was inhibited despite similar increase in cell volume in both cell types. GdCl3 (100 μmol/l) did not affect insulin response from INS-1E cells to hypotonic challenge. Hypertonic medium inhibited glucose-induced insulin secretion from islets but not from tumor cells. Noradrenaline (1 μmol/l) inhibited glucose-induced but not swelling-induced insulin secretion from INS-1 cells. Surprisingly, perifusion with Ca2+-depleted medium showed distinct secretory response of INS-1E cells to hypotonicity while that of INS-1 cells was partially inhibited. Functioning glucose-induced insulin secretion is not sufficient prerequisite for hypotonicity-induced response in INS-1E cells suggesting that swelling-induced exocytosis is not essential step in the mechanism mediating glucose-induced insulin secretion. Both cell lines are resistant to inhibitory effect of hyperosmolarity on glucose-induced insulin secretion. Response of INS-1E cells to hypotonicity is inhibited by the presence of Ca2+ in medium., M. Orečná, R. Hafko, Z. Bačová, J. Podskočová, D. Chorvát Jr., V. Štrbák., and Obsahuje bibliografii a bibliografické odkazy
The pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae), is a well-studied species in terms of its colour polymorphism, where it occurs as two distinct colour morphs, red and green. It is proposed that the occurrence and maintenance of this polymorphism is an adaptive response to environmental factors, in particular natural enemies and host plant quality. We hypothesized that these adaptations are directly mirrored in the energy reserves accumulated by the different colour morphs during their pre-adult stages and reflect their specialization for particular ecological roles. We quantitatively measured the different energy reserves of red and green pea aphids and found that the total energy reserves of these morphs did not differ. Interestingly, these reserves were made up of different components in the red and green colour morphs. There was a higher percentage content of water-soluble carbohydrates and lipids in the red clones and higher percentage content of protein in green clones. These finding are in accordance with green clones being more fecund than red ones and needing more protein for reproduction than red clones, which produce more winged offspring when crowded or in response to the presence of natural enemies and so, need more lipids and carbohydrates to fuel their walking and flight. Apparently, different colour morphs are physiologically specialized to adjust their energy reserves in relation to their specific ecological adaptations and maximize their fitness in terms of dispersal, reproduction, defense and survival., Seyed Mohammad Ahsaei ... []., and Obsahuje seznam literatury