We have examined the changes of intercellular electrical coupling protein connexin-43 (Cx43) and of PKC-ε in heart atria of diabetic rats and/or after the treatment with triiodothyronine (T3 ). Diabetes was induced in Wistar-Kyoto rats by streptozotocin (50 mg/kg, i.v.) and atria were examined after 5 (acute stage) and 10 (chronic stage) weeks. T 3 (10 μg/100 g/day) was applied via a gastric tube for the last 10 days prior to the end of the experiments to non-diabetic and to the half of diabetic rats. Expression and phosphorylated status of Cx43, as well as expression of PKC-ε , were analyzed by Western blots using mouse monoclonal anti-Cx43 and rabbit polyclonal anti-PKC-ε antibodies. We found that the Cx43 expression was significantly increased after the treatment with T3 and in the acute diabetes. Both in diabetes and after T3 treatment the phosphorylation of Cx43 isoforms was markedly suppressed compared to the non-diabetic and T3-untreated controls. Such a down-regulation was less pronounced in diabetic rats after the T3-treatment. The expression of atrial PKC-ε was increased in diabetic rats. This increase was suppressed after T3 administration and the expression was decreased in T3-treated non-diabetic rats. We suggest that the reduced Cx43 phosphorylation in diabetic and hyperthyroid rats can deteriorate a cell-to-cell coupling and consequently facilitate a development of atrial tachyarrhythmia in diabetic or hyperthyroid animals., M. Mitašíková ... [et al.]., and Obsahuje seznam literatury
We have found that the determination of thiodiglycolic acid (TDGA) in urine may help to characterize metabolic imbalance of substances participating in methionine synthesis, which leads to hyperhomocystinuria. From the metabolic scheme, based on a proper combination of known facts, we attempted to theoretically explain and to demonstrate the possibilities of TDGA formation via different ways of homocysteine transformation. This scheme was used in evaluating the results obtained by testing urine of a woman suffering from impaired function of methionine synthase reductase (CblE type of homocystinuria). The amount of TDGA excreted in her morning urine was very sensitive to the changes in her treatment based upon a combination of N5-formyl tetrahydrofolate, betaine and vitamin B12. Vitamin B12 given in the evening either alone or together with betaine increased the TDGA excretion in the morning urine up to ten times. On the other hand, in the absence of vitamin B12, betaine in combination with N5-formyl tetrahydrofolate hindered the appearance of TDGA in the morning urine. Generally, the determination of TDGA in urine of an appropriately pretreated patient may indicate the degree of success of the treatment., T. Navrátil, M. Petr, Z. Šenholdová, K. Přistoupilová, T. I. Přistoupil, M. Heyrovský, D. Pelclová, E. Kohlíková., and Obsahuje bibliografii a bibliografické odkazy
Derivative of 6-methyluracil, selective cholinesterase inhibitor C-547 potentiates miniature endplate currents (MEPCs) in rat external intercostal muscles (external ICM) more effectively than in internal intercostal muscles (internal ICM). Effect of the C-547 on intercostal muscles was compared with those on extensor digitorum longus (EDL) and diaphragm muscles. Half-effective concentrations for τ of MEPC decay arranged in increasing order were as follows: EDL, locomotor muscle, most sensitive = 1.3 nM, external ICM, inspiration muscle = 6.8 nM, diaphragm, main inspiration muscle = 28 nM, internal ICM, expiration muscle = 71 nM. External ICM might therefore be inhibited, similarly as the limb muscles, by nanomolar concentrations of the drug and do not participate in inspiration in the presence of the C-547. Moreover, internal ICM inhibition can hinder the expiration during exercise-induced fast breathing of C-547-treated experimental animals., K. Petrov ... [et al.]., and Obsahuje seznam literatury
Microvessels respond to metabolic stimuli (e.g. pO2) and hemodynamic forces (e.g. shear stress and wall stress) with structural adaptations including angiogenesis, remodeling and pruning. These responses could be mediated by differential gene expression in endothelial and smooth muscle cells. Therefore, rat mesenteric arteries and veins we reexcised by microsurgery, and mRNA expression of four angioadaptation-related genes was quantified by real time duplex RT-PCR in equal amounts of total RNA, correlated to two different house keeping genes (ß-actin, GAPDH). The results show higher expression of VEGFA, TIE2, and ANG2 in arteries than in veins, but equal expression of ADAMTS1. Higher availability of VEGFA mRNA in endothelial cells of arteries shown here could contribute to the maintenance of mechanically stressed blood vessels and counteract pressure-induced vasoconstriction., N. Mecha Disassa ... [et al.]., and Obsahuje seznam literatury
The nucleus accumbens (NAc) core is critical in the control of motivated behaviors. The muscarinic acetylcholine receptors (mAChRs) modulating the excitatory inputs into the NAc core have been reported to impact such behaviors. Recent studies suggest that ventral and dorsal regions of the NAc core seem to be innervated by distinct popula tions of glutamatergic projection neurons. To further examine mAChRs modulation of these glutamatergic inputs to the NAc core, we employed intracellular recordings in rat NAc coronal slice preparation to characterize: 1) the effects of muscarine, an mAChRs agonist, on membrane properties of the NAc core neurons; 2) depolarizing synaptic potentials (DPSP) elicited by ventral and dorsal focal electrical stimuli; and 3) paired-pulse response with paired-pulse stimulation. Here we report that the paired-pulse ratio (PPR) elicited by dorsal stimuli was grea ter than that elicited by ventral stimuli. Bath application of muscarine (1-30 μ M) decreased both ventral and dorsal DPSP in a concentration-dependent manner, with no effect on electrophysiological properties of NAc core neurons. Muscarine at 30 μ M also elicited larger depression of dorsal DPSP than ventral DPSP. Moreover, muscarine increased the PPR of both dorsal and ventral DPSP. These data indicate that the glutamatergic afferent fibers traversing the dorsal and ventral NAc are separate, and that differential decrease of distinct afferent excitatory neurotransmission onto NAc core neurons may be mediated by presynaptic mechanisms., X. Jiang ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The glycophenotyping of mammalian cells with plant lectins maps aspects of the glycomic profile and disease-associated alterations. A salient step toward delineating their functional dimension is the detection of endogenous lectins. They can translate sugar-encoded changes into cellular responses. Among them, the members of the lectin family of galectins are emerging regulators of cell adhesion, migration and proliferation. Focusing on galectins-1, -3 and -7, we addressed the issue whether their expression is regulated during wound healing in porcine skin as model. A conspicuous upregulation is detected for galectin-1 in the dermis and a neoexpression in the epidermis, where an increased level of galectin-7 was also found. Applying biotinylated tissue lectins as probes, the signal intensities for accessible binding sites decreased, intimating an interaction of the cell lectin with reactive sites. In contrast, galectin-3 parameters remained rather constant. Of note, epidermal cells in culture also showed an increase in expression/presence of galectin-1, measured on the levels of mRNA and protein, in this case by Western blotting and quantitative immunocytochemistry. Used as matrix, galectin-1 conferred resistance to trypsin treatment to attached human keratinocytes and reduced migration into scratch-wound areas in vitro. This report thus presents new information on endogenous lectins in wound healing and differential regulation among the three tested cases., J. Klíma ... [et al.]., and Obsahuje seznam literatury
The activity of 194 neurons was recorded in three subdivisions of the medial geniculate body (74 neurons in the ventral, 62 in the medial and 44 neurons in the dorsal subdivision, i.e. vMGB, mMGB and dMGB) of guinea pigs anesthetized with ketamine-xylazine. The discharge properties of neurons were evaluated by means of peristimulus time histograms (PSTHs), interval histograms (INTHs) and auto-correlograms (ACGs). In the whole MGB, the most frequent PSTH responses to pure tone stimuli were onset (43 %) or chopper (32 %). The onset responses were mostly present in the vMGB, whereas chopper responses dominated in the dMGB. In the whole MGB Poisson-like and bimodal INTHs were found in 46 % and 40 % of neurons, respectively. The mMGB revealed fewer bimodal and more symmetrical types of INTH. In the whole MGB, 60 % of units were found to have ACGs typical for short bursts (<100 ms), 23 % for long bursts (>100 ms) and 15 % of units fired without bursts. Neurons in the vMGB were characterized by short bursting, whereas those in the mMGB and dMGB expressed more activity in the long bursts. The results demonstrate that the type of information processing in the vMGB, which belongs to the ”primary” auditory system, is different from that in two other subdivisions of the MGB., E. Kvašňák, J. Popelář, J. Syka., and Obsahuje bibliografii
We aimed to determine the impact of Ca2+-related disorders induced in intact animal hearts on ultrastructure of the cardiomyocytes prior to occurrence of severe arrhythmias. Three types of acute experiments were performed that are known to be accompanied by disturbances in Ca2+ handling. Langedorffperfused rat or guinea pig hearts subjected to K+-deficient perfusion to induce ventricular fibrillation (VF), burst atrial pacing to induce atrial fibrillation (AF) and open chest pig heart exposed to intramyocardial noradrenaline infusion to induce ventricular tachycardia (VT). Tissue samples for electron microscopic examination were taken during basal condition, prior and during occurrence of malignant arrhythmias. Cardiomyocyte alterations preceding occurrence of arrhythmias consisted of non-uniform sarcomere shortening, disruption of myofilaments and injury of mitochondria that most likely reflected cytosolic Ca2+ disturbances and Ca2+ overload. These disorders were linked with non-uniform pattern of neighboring cardiomyocytes and dissociation of adhesive junctions suggesting defects in cardiac cell-to-cell coupling. Our findings identified heterogeneously distributed high [Ca2+]i-induced subcellular injury of the cardiomyocytes and their junctions as a common feature prior occurrence of VT, VF or AF. In conclusion, there is a link between Ca2+-related disorders in contractility and coupling of the cardiomyocytes pointing out a novel paradigm implicated in development of severe arrhythmias., N. Tribulova, V. Knezl, B. Szeiffova Bacova, T. Egan Benova, C. Viczenczova, E. Gonçalvesova, J. Slezak., and Obsahuje bibliografii
a1_We hypothesize that hypokalemia-related electrolyte imbalance linked with abnormal elevation of intracellular free Ca2+ concentration can cause metabolic disturbances and subcellular alterations resulting in intercellular uncoupling, which favor the occurrence of malignant arrhythmias. Langendorff-perfused guinea pig heart (n = 44) was subjected to a standard Tyrode solution (2.8 mmol/l K+) followed by a K+-deficient solution (1.4 mmol/l K+). Bipolar ECG of the left atria and ventricle was continuously monitored and the incidence of ventricular fibrillation was evaluated. Myocardial tissue sampling was performed during stabilization, hypokalemia and at the onset of fibrillation. Enzyme activities of succinic dehydrogenase, glycogen phosphorylase and 5-nucleotidase were determined using in situ catalytic histochemistry. The main gap junction protein, connexin-43, was labeled using mouse monoclonal antibody and FITC conjugated goat antimouse antibody. Ultrastructure was examined by transmission electron microscopy. The free Ca2+ concentration was measured by the indo-1 method in ventricular cell cultures exposed to a K+-free medium. The results showed that sustained ventricular fibrillation appeared within 15-30 min of low K+ perfusion. This was preceded by ectopic activity, episodes of bigeminy and tachycardia. Hypokalemia induced moderate reversible and sporadically irreversible subcellular alterations of cardiomyocytes and impairment of intercellular junctions, which were heterogeneously distributed throughout myocardium. Patchy areas with decreased enzyme activities and diminished immunoreactivity of connexin-43 were found. Furthermore, lack of external K+ was accompanied by an increase of intracellular Ca2+. The prevention of Ca2+ overload by either 1 mmol/l Ni2+ (Na+/Ca2+ inhibitor), 2.5 mmol/l verapamil, 10 mmol/l d-sotalol or 10 mmol/l tedisamil was associated with the protection agains fibrillation., a2_The results indicate that hypokalemia induces Ca2+ overload injury and disturbances in intercellular coupling. Dispersion of these changes throughout the myocardium may serve as the basis for microreentry circuits and thus favor fibrillation occurrence., N. Tribulová, M. Manoach, D. Varon, L. Okruhlicová, T. Zinman , A. Shainberg., and Obsahuje bibliografii
DNA repair is an active cellular process to respond to constant DNA damage caused by metabolic processes and environmental factors. Since the outcome of DNA damage is generally adverse and long term effects may contribute to oncogenesis, cells have developed a variety of DNA repair mechanisms, which operate depending on the type of DNA damage inflicted. At least 15 Fanconi anemia (FA) proteins interact in a common pathway involved in homologous recombination. Inherited homozygous mutations in any of these FA genes cause a rare disease, Fanconi anemia, characterized by congenit al abnormalities, progressive bone-marrow failure and cancer susceptibility. Heterozygous germline FA mutations predispose to various types of cancer. In addition, somatic FA mutations ha ve been identified in diverse cancer types. Evidence exists that cells deficient in the FA pathway become dependent on alternative pathways for survival. Additional inhibition of such alternative pathways is thus expected to result in cell death, creating a relationship of synthetic lethality. Identifying these relationships can reveal yet unknown mechanisms of DNA repair and new targets for therapy., T. Hucl, E. Gallmeier., and Obsahuje bibliografii a bibliografické odkazy