Plant-based n-3 polyunsaturated fatty acids (PUFA) possess a prospective antiatherogenic potential. Currant oil from Ribes nigrum L. is one of the few plant oils containing PUFAn-3 (15.3 mol%) in addition to PUFAn-6 (60.5 mol%). This study was aimed at comparing the effects of currant oil with those of lard fat, rich in saturated (43.8 mol%) and monounsaturated (47.0 mol%) fatty acids, on antioxidant parameters, the lipoprotein profile and liver lipids in rats fed on 1 % (w/w) cholesterol diets containing either 10 % of currant oil (COD) or lard fat (LFD). After 3 weeks of feeding, the COD induced a significant decrease in blood glutathione (GSH) and an increase in Cu2+ induced oxidizability of serum lipids, but did not affect liver GSH and t-butyl hydroperoxide-induced lipoperoxidation of liver microsomes. Although the COD did not cause accumulation of liver triacylglycerols as LFD, the lipoprotein profile (VLDL, LDL, HDL) was not significantly improved after COD. The consumption of PUFAn-3 was reflected in LDL as an increase in eicosapentaenoic and docosahexaenoic acid. These results suggest that currant oil affects positively the lipid metabolism in the liver, above all it does not cause the development of a fatty liver. However, adverse effects of currant oil on the antioxidant status in the blood still remain of concern., R. Večeřa, N. Škottová, P. Váňa, L. Kazdová, Z. Chmela, Z. Švagera, D. Walterová, J. Ulrichová, V. Šimánek., and Obsahuje bibliografii
The consequences of increased oxidative stress, measured as the level of malondialdehyde (MDA) during ischemia/reperfusion, were studied in 48 patients in the acute phase of myocardial infarction (AMI) and a control group (21 blood donors). The serum levels of a-tocopherol and b-carotene were followed. Immediately after the treatment onset the level of a-tocopherol started to decrease, reaching a plateau after 24 h. The consumption of b-carotene was delayed by 90 min. Steady decline was detected during the whole time interval studied (48 h). Glutathione peroxidase (GPx) activity, as a representative of antioxidant enzymes, was estimated in whole blood. The influx of oxygenated blood was accompanied by a stimulation of GPx activity, which reached its maximum at the time of completed reperfusion. When comparing the AMI patients with the control group, the levels of MDA were found significantly increased, which indicates that oxidative stress is already increased during ischemia. Lower antioxidant levels found in the patients might either already be the result of vitamin consumption during ischemia or be a manifestation of their susceptibility to AMI. Monitored consumption of a-tocopherol and b-carotene during reperfusion indicated that in the case of patients, whose level of antioxidant vitamins is below the threshold limit, a further substantial decrease of antioxidant vitamins during reperfusion could enhance the oxidative damage of the myocardium., V. Mužáková, R. Kanďár, P. Vojtíšek, J. Skalický, R. Vaňková, A. Čegan, Z. Červinková., and Obsahuje bibliografii
Digital projectors use prism assemblies to separate the chromatic R,G,B components of source white light. Transmission of the colour- separating prisms must be as high as possible and therefore it is necessary to minimize their energy losses. From the point of view the energy losses there are three critical parts: glass, dichroic filters and antireflection coatings. The optimal antireflection coatings must have not only small values of reflection but also small values of total losses of energy in layers. and Digitální projektory používají hranolové soustavy k vyčlenění barevných R,G,B složek z bílého světla zdroje. Propustnost barvodělicích hranolů musí být co nejvyšší, a proto je nutné minimalizovat jejich energetické ztráty. Z hlediska ztrát energie existují tři kritická místa: sklo, dichroické filtry a antireflexní vrstvy. Optimální antireflexní vrstvy musí mít nejen nízké hodnoty reflexe, ale i nízké hodnoty celkových ztrát energie ve vrstvách.
We studied how the reductions of trienoic fatty acids (TAs) and increases of dienoic fatty acids (DAs) enhanced high-temperature tolerance in antisense expression of tomato chloroplast omega-3 fatty acid desaturase gene (LeFAD7) transgenic tomato (Lycopersicon esculentum Mill.) plants. In transgenic plants, the content of linolenic acid (18:3) was markedly decreased, while linoleic acid (18:2) was increased correspondingly and the similar changes were observed under high-temperature stress as well. Under high-temperature stress, transgenic plants can maintain a relatively higher level of net photosynthetic rate (P N) and chlorophyll (Chl) content than that of wild type (WT) plants. A decreased Chl/Carotenoids (xanthophylls and carotenes, Car) ratio and Chl a/b ratio were observed in transgenic plants. Transgenic plants exhibited visible decrease in the relative electrolyte conductivity, higher activities of antioxidative enzymes and lower reactive oxygen species correspondingly than WT. In addition, high-temperature stress for 24 h caused more extensive changes of chloroplast ultrastructure in WT than in transgenic plants. We therefore suggested that the enhancement of high-temperature tolerance in antisense expression of LeFAD7 transgenic plants might be raised from the reduction of TAs and increase of DAs subsequently leading to series of physiological alterations. and X. Liu ... [et al.].
A tomato (Lycopersicon esculentum Mill.) zeaxanthin epoxidase gene (LeZE) was isolated and antisense transgenic tomato plants were produced. Northern, southern, and western blot analyses demonstrated that antisense LeZE was transferred into the tomato genome and the expression of LeZE was inhibited. The ratio of (A+Z)/(V+A+Z) in antisense transgenic plants was maintained at a higher level than in the wild type (WT) plants under high light and chilling stress with low irradiance. The value of non-photochemical quenching (NPQ) in WT and transgenic plants was not affected during the stresses. The oxidizable P700 and the maximal photochemical efficiency of PSII (Fv/Fm) in transgenic plants decreased more slowly at chilling temperature under low irradiance. These results suggested that suppression of LeZE caused zeaxanthin accumulation, which was helpful in alleviating photoinhibition of PSI and PSII in tomato plants under chilling stress. and N. Wang ... [et al.].