Numerous hypotheses have been proposed about the pathogenesis of the polycystic ovarian syndrome (PCOS). However, hormonal control of persistent follicles has not be enestablished. The objective of the present study was to compare the follicular structure and hormonal profiles of rats treated with the adrenocor ticotrophic hormone (ACTH) with two experimental models of PCOS. ACTH-treated animals were compared with those exposed to continuous light, those treated with estradiol valerate, and with control (in proestrous and diestrous). Serum hormone levels, histomorphometrical changes, and immunoexpression of vimentin, cytokeratins, cadherins, and proliferating cell nuclear antigen (PCNA) were examined. Treatment with ACTH resulted in an elevation of corticosterone secretion with LH reduction but without changes in ovarian morphology. Although stress (or ACTH) stimulation may be only one of pathophysiological mechanisms involved in follicular cystathogenesis in other species, we do not have important evidence to suppose that this would happen in rats., C. Bavaralle, N. R. Salvetti, G. A. Mira, J. A. Lorente, H. H. Ortega., and Obsahuje bibliografii a bibliografické odkazy
Certain liver metabolic diseases point to the presence of disturbances in glycogen deposition. Epinephrine raises the cAMP level that activates protein kinase A leading to the activation of phosphorylase and glycogen breakdown. In the present report, we sought to investigate whether NO is produced during adrenoceptor agonist-induced glycogenolysis in rat hepatocytes in cultures. Isolated glycogen rich rat hepatocytes in cultures were used. NO production (NO2-) was assessed under the effect of adrenergic agonists and adrenergic agonist/antagonist pairs, dibutyryl cyclic AMP sodium-potassium salt (db-cAMP), NO synthase (NOS) inhibitors Nω-nitro-L-arginine methyl ester (L-NAME), aminoguanidine (AG) and the NO donor S-nitroso-N-acetyl penicillamine (SNAP) . The inducible NO synthase (iNOS) mRNA was examined by the reverse transcription-polymerase chain reaction (RT-PCR). Glycogenolysis was quantified by glucose levels released into medium. The amount of glucose and NO2- released by hepatocytes was increased as a result of epinephrine, phenylephrine or db-cAMP treatments. The increase in glucose and NO2- released by epinephrine or phenylephrine was blocked or reduced by prazosin pretreatment and by NOS inhibitors aminoguanidine and L-NAME. iNOS gene expression was up-regulated by epinephrine. It can be concluded that glycogenolysis occurs through α adrenoceptor stimulation and a signaling cascade may involve NO production., J. Hodis, N. Kutinová-Canová, P. Potměšil, L. Kameníková, E. Kmoníčková, Z. Zídek, H. Farghali., and Obsahuje biblografii a bibliografické odkazy
Photosystem 2 (PS 2) reaction centre can be considered as a water-plastoqninone oxido-reductase. Using four photons it transfers four electrons from two molecules of water to plastoquinone (PQ), producing the molecular oxygen and two molecules of double reduced PQ. PS 2 is the site of the antagonistic action of bicarbonate and formáte on PS 2 electron flow; incubation of isolated chloroplasts with formáte results in full inhibition of electron flow actívity, which can be restored by addition of bicarbonate. This bicarbonate effect is located at the Dl protein and affects the electron flow between the primary quinone and the PQ pool. Bicarbonate is probably involved in stabilizatíon of tíie semireduced secondary quinone Qb, and in the protonation reactions at this site. Under physiological conditions bicarbonate is boimd to thylakoid membranes. Addition of formáte to thylakoids appears to release CO2. The bicarbonate effect is not only observed in isolated chloroplasts, but also in intact organisms as green algae and leaves. Bicarbonate Controls PS 2 electron flow in order to cope with stress conditions leading to, for instance, photoinhibition or to the high rates of photorespiration.
Carbon dioxide interacts both with reactive nitrogen species and reactive oxygen species. In the presence of superoxide, NO reacts to form peroxynitrite that reacts with CO2 to give nitrosoperoxycarbonate. This compound rearranges to nitrocarbonate which is prone to further reactions. In an aqueous environment, the most probable reaction is hydrolysis producing carbonate and nitrate. Thus the net effect of CO2 is scavenging of peroxynitrite and prevention of nitration and oxidative damage. However, in a nonpolar environment of membranes, nitrocarbonate undergoes other reactions leading to nitration of proteins and oxidative damage. When NO reacts with oxygen in the absence of superoxide, a nitrating species N2O3 is formed. CO2 interacts with N2O3 to produce a nitrosyl compound that, under physiological pH, is hydrolyzed to nitrous and carbonic acid. In this way, CO2 also prevents nitration reactions. CO2 protects superoxide dismutase against oxidative damage induced by hydrogen peroxide. However, in this reaction carbonate radicals are formed which can propagate the oxidative damage. It was found that hypercapnia in vivo protects against the damaging effects of ischemia or hypoxia. Several mechanisms have been suggested to explain the protective role of CO2 in vivo. The most significant appears to be stabilization of the iron-transferrin complex which prevents the involvement of iron ions in the initiation of free radical reactions., A. Veselá, J. Wilhelm., and Obsahuje bibliografii
a1_Vascular resistance in the mammalian pulmonary circulation is affected by many endogenous agents that influence vascular smooth muscle, right ventricular myocardium, endothelial function, collagen and elastin deposition, and fluid balance. When the balance of these agents is disturbed, e.g. by airway hypoxia from high altitude or pulmonary obstructive disorders, pulmonary hypertension ensues, as characterized by elevated pulmonary artery pressure (PPA). Among neuropeptides with local pulmonary artery pressor effects are endothelin-1 (ET-1), angiotensin II (AII), and substance P, and among mitigating peptides are calcitonin gene-related peptide (CGRP), adrenomedullin (ADM), atrial natriuretic peptide (ANP), vasoactive intestinal peptide (VIP) and ET-3. Moreover, somatostatin28 (SOM28) exacerbates, whereas SOM14 decreases PPA in hypoxic rats, with lowering and increasing of lung CGRP levels, respectively. Pressure can also be modulated by increasing or decreasing plasma volume (VIP and ANP, respectively), or by induction or suppression of vascular tissue remodeling (ET-1 and CGRP, respectively). Peptide bioavailability and potency can be regulated through hypoxic up- and down- regulation of synthesis or release, activation by converting enzymes (ACE for AII and ECE for ET-1), inactivation by neutral endopeptidase and proteases, or by interaction with nitric oxide (NO). Moreover, altered receptor density and affinity can account for changed peptide efficacy. For example, upregulation of ETA receptors and ET-1 synthesis occurs in the hypoxic lung concomitantly with reduced CGRP release. Also, receptor activity modifying protein 2 (RAMP2) has been shown to confer ADM affinity to the pulmonary calcitonin-receptor-like receptor (CRLR). We recently detected the mRNA encoding for RAMP2, CRLR, and the CGRP receptor RDC-1 in rat lung., a2_The search for an effective, lung selective treatment of pulmonary hypertension will likely benefit from exploring the imbalance and restoring the balance between these native modulators of intrapulmonary pressure. For example, blocking of the ET-1 receptor ETA and vasodilation by supplemental CGRP delivered i. v. or via airway gene transfer, have proven to be useful experimentally., I. M. Keith., and Obsahuje bibliografii
Gastrointestinal hormones play an important role in the neuroendocrine regulation of food intake and postprandial satiety. Ghrelin is a 28-amino acid orexigenic peptide produced mainly by the stomach that is involved in both the long-term regulation of body weight and the short-term regulation of postprandial satiety. Impairments in ghrelin secretion may in concert with other factors play an important role in the development of both obesity and anorexia nervosa. Despite an intensive research the critical factors regulating physiological postprandial ghrelin response in healthy individuals and its modification by the presence of obesity and anorexia nervosa are only partially understood. The potential contribution of ghrelin to the differences of diet- vs. surgical-induced weight losses in morbidly obese patients is now also being recognized. The aim of this review is to summarize the current knowledge about the physiology and pathophysiology of ghrelin and to discuss its potential in the prevention and/or treatment of obesity and anorexia nervosa., I. Dostálová, M. Haluzík., and Obsahuje seznam literatury
Ferritin and increased iron stores first appea red on the list of cardiovascular risk factors more than 30 years ago and their causal role in the pathogenesis of atherosclerosis has been heavily discussed since the early 1990s. It seems that besides traditional factors such as hyperlipoprotein emia, hyp ertension, diabetes mellitus, obesity, physical inactivity, smoking and family history, high iron stores represent an additional parameter that could modify individual cardiovascular risk. The role of iron in the pathogenesis of atherosclerosis was origina lly primarily associated with its ability to cataly ze the formation of highly reactive free oxygen radicals and the oxidation of atherogenic lipoproteins. Later, it became clear that the mechanism is more complex. Atherosclerosis is a chronic fibroprolife rative inflammatory process and iron, through increased oxidation stress as well as directly, can control both native and adaptive immune responses. Within the arterial wall, iron affects all of the cell types that participate in the atherosclerotic proces s (monocytes/macrophages, endothelial cells, vascular smooth muscle cells and platelets). Most intracellular iron is bound in ferritin, whereas redox-active iron forms labile iron pool. Pro-inflammatory and anti-inflammatory macrophages within arterial plaque differ with regard to the amount of intracellular iron and most probably with regard to their labile iron pool. Yet, the relation between plasma ferritin and intracellular labile iro n pool has not been fully clarified. Data from population studies document that the consumption of meat and lack of physical activity contribute to increased iron stores. Patients with hereditary h emochromatosis, despite extreme iron storage, do not show i ncreased manifestation of atherosclerosis probably due to the low expression of hepcidin in macrophages., P. Kraml., and Obsahuje bibliografii
This review focuses on current knowledge of leptin biology and the role of leptin in various physiological and pathophysiological states. Leptin is involved in the regulation of body weight. Serum leptin can probably be considered as one of the best biological markers reflecting total body fat in both animals and humans. Obesity in man is accompanied by increased circulating leptin concentrations. Gender differences clearly exist. Leptin is not only correlated to a series of endocrine parameters such as insulin, glucocorticoids, thyroid hormones, testosterone, but it also seems to be involved in mediating some endocrine mechanisms (onset of puberty, insulin secretion) and diseases (obesity, polycystic ovary syndrome). It has also been suggested that leptin can act as a growth factor in the fetus and the neonate., R. Janečková., and Obsahuje bibliografii
Lipid peroxidation of rat cerebral cortex membranes was induced by Fe2+/ADP and ascorbate. The rate of Na+/K+-ATPase inhibition was correlated with the increase of thiobarbituric acid-reactive substances (TBARS) and conjugated dienes (CD) and with membrane fluidity changes. Our data showed that membrane fluidity changes (evaluated by fluorescence steady-state anisotropy measurements) can participate in Na+/K+-ATPase inhibition during the initial period of lipid peroxidation process, whereas during the following period the enzyme inhibition correlates only with TBARS and CD production., H. Rauchová, Z. Drahota, J. Koudelová., and Obsahuje bibliografii
Endothelial dysfunction may be considered as the interstage between risk factors and cardiovascular pathology. An imbalance between the production of vasorelaxing and vasoconstricting factors plays a decisive role in the development of hypertension, atherosclerosis and target organ damage. Except vasorelaxing and antiproliferative properties per se, nitric oxide participates in antagonizing vasoconstrictive and growth promoting effects of angiotensin II, endothelins and reactive oxygen species. Angiotensin II is a potent activator of NAD(P)H oxidase contributing to the production of reactive oxygen species. Numerous signaling pathways activated in response to angiotensin II and endothelin-1 are mediated through the increased level of oxidative stress, which seems to be in casual relation to a number of cardiovascular disturbances including hypertension. With respect to the oxidative stress, the NO molecule seems to be of ambivalent nature. On the one hand, NO is able to reduce generation of reactive oxygen species by inhibiting association of NAD(P)H oxidase subunits. On the other hand, when excessively produced, NO reacts with superoxides resulting in the formation of peroxynitrite, which is a free radical deteriorating endothelial function. The balance between vasorelaxing and vasoconstricting substances appears to be the principal issue for the physiological functioning of the vascular bed., O. Pecháňová, F. Šimko., and Obsahuje bibliografii