Beginning from John Broome’s approach to Enkrasia, the paper quickly moves to giving a condensed presentation of an approach to practical reasoning motivated by a Fregean approach to inference (in theoretical reasoning). The suggested account of practical reasoning avoids using rationality requirements to do explanatory work when accounting for correct reasoning, and thus avoids lots of problems. It is strictly conservative in its approach, and no new inference rules are required for moving from the theoretical to the practical case. It is suggested that we can stick to deductive reasoning when accounting for practical reasoning proper; the crucial premiss from theoretical reasoning about practical matters cannot normally be established this way. The paper moves on to tackle counterarguments to the effect that there will simply be too little correct practical reasoning on the present (deductive) approach. The simple account of correct reasoning has too high a cost, it is argued. The paper meets this objection when it argues that much reasoning is enthymematic or incomplete reasoning. By making specific claims about how there may be practical premisses to which we do not attend even when they are, in some sense, before the mind, the approach is defended., Počínaje přístupem Johna Broomeho k Enkrasii se papír rychle přesouvá k tomu, aby poskytl zhuštěnou prezentaci přístupu k praktickému uvažování motivovanému Fregeanovým přístupem k závěru (v teoretickém uvažování). Navrhovaný popis praktického uvažování se vyhýbá použití požadavků na racionálnost při vysvětlování při správném uvažování a vyhýbá se tak spoustě problémů. Ve svém přístupu je striktně konzervativní a pro přechod z teoretického do praktického případu nejsou nutná žádná nová pravidla odvozování. Navrhujeme, abychom se mohli držet deduktivních úvah, když se budeme zabývat praktickým vysvětlováním; rozhodující předpoklad z teoretického uvažování o praktických záležitostech nemůže být normálně takto stanoven. Příspěvek se zaměřuje na řešení protiargumentů v tom smyslu, že bude existovat příliš málo správných praktických úvah o současném (deduktivním) přístupu. Jednoduchý popis správného uvažování má příliš vysoké náklady, tvrdí se. Příspěvek tuto námitku splňuje, když argumentuje, že mnoho úvah je entymatické nebo neúplné uvažování. Konkrétními tvrzeními o tom, jak mohou existovat praktické předpoklady, kterých se nezúčastníme, i když jsou v určitém smyslu před myslmi, je přístup bráněn., and Olav Gjelsvik
An application of Mittag-Leffler lemma in the category of quotients of Fréchet spaces. We use Mittag-Leffler Lemma to prove that for a nonempty interval ]a, b[⊂ R, the restriction mapping H∞(]a, b[+iR) → C∞ (]a, b[) is surjective and we give a corollary.
L’article présente un exemplaire inédit de fibule tardo-hallstattienne à tête d’oiseau aquatique provenant de Bohême et conservé au Musée de Slaný, discute son contexte général, sa datation et sa relation avec les formes laténiennes analogues. À partir de l’état actuel de nos connaissances, il devrait s’agir d’une catégorie de parures diffusée à partir de l’Italie septentrionale vers le début du Ve siècle av. J.-C. Son lien avec le corail, matière associée à la vie chez les Celtes, ainsi que l’image de l’oiseau aquatique, liée aux changements saisonniers et au concept de l’alternance cyclique, confirment la signification symbolique de l’objet. and The article uses as yet unpublished Late Hallstatt brooch from Bohemia to create an overview of knowledge on bird’s head brooches from this period, their general context, dating and relationships with related Early La Tène forms. According to current information on the state of research, this is a category of brooches whose origin can best be traced to northern Italy at the beginning of the 5th century BC. The use of coral, a material connected with the Celtic notion of life, and the depiction of water fowl connected with the concept of cyclical alternation, confirm the symbolic meaning of the artefact.
A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^{-1}$ via a particular type of similarity. Let $\mathcal{H}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal{H}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal{H}$ which possess bicyclic inverses., Swarup Kumar Panda., and Obsahuje bibliografii
In this paper significant challenges are raised with respect to the view that explanation essentially involves unification. These objections are raised specifically with respect to the well-known versions of unificationism developed and defended by Michael Friedman and Philip Kitcher. The objections involve the explanatory regress argument and the concepts of reduction and scientific understanding. Essentially, the contention made here is that these versions of unificationism wrongly assume that reduction secures understanding.
This paper concerns with the finite volume scheme for nonlinear tensor diffusion in image processing. First we provide some basic information on this type of diffusion including a construction of its diffusion tensor. Then we derive a semi-implicit scheme with the help of so-called diamond-cell method (see \cite{Coirier1} and \cite{Coirier2}). Further, we prove existence and uniqueness of a discrete solution given by our scheme. The proof is based on a gradient bound in the tangential direction by a gradient in normal direction. Moreover, the proofs of L2(Ω) - a priori estimates for our discrete solution are given. Finally we present our computational results.
This paper is devoted to studying the effects of a vanishing structural damping on the controllability properties of the one dimensional linear beam equation. The vanishing term depends on a small parameter $\varepsilon \in (0,1)$. We study the boundary controllability properties of this perturbed equation and the behavior of its boundary controls $v_{\varepsilon }$ as $\varepsilon $ goes to zero. It is shown that for any time $T$ sufficiently large but independent of $\varepsilon $ and for each initial data in a suitable space there exists a uniformly bounded family of controls $(v_\varepsilon )_\varepsilon $ in $L^2(0, T)$ acting on the extremity $x = \pi $. Any weak limit of this family is a control for the beam equation. This analysis is based on Fourier expansion and explicit construction and evaluation of biorthogonal sequences. This method allows us to measure the magnitude of the control needed for each eigenfrequency and to show their uniform boundedness when the structural damping tends to zero.
It is a classical problem in Fourier analysis to give conditions for a single sine or cosine series to be uniformly convergent. Several authors gave conditions for this problem supposing that the coefficients are monotone, non-negative or more recently, general monotone. There are also results for the regular convergence of double sine series to be uniform in case the coefficients are monotone or general monotone double sequences. In this paper we give new sufficient conditions for the uniformity of the regular convergence of sine-cosine and double cosine series, which are necessary as well in case the coefficients are non-negative. The new results also bring necessary and sufficient conditions for the uniform regular convergence of double trigonometric series in complex form.
Let $C$ be the extended complex plane; $G\subset C$ a finite Jordan with $ 0\in G$; $w=\varphi (z)$ the conformal mapping of $G$ onto the disk $ B\left( {0;\rho _{0}}\right):={\left\rbrace {w\:{\left| {w}\right| }<\rho _{0}} \right\lbrace }$ normalized by $\varphi (0)=0$ and ${\varphi }^{\prime }(0)=1$. Let us set $\varphi _{p}(z):=\int _{0}^{z}{{\left[ {{\varphi } ^{\prime }(\zeta )}\right] }^{{2}/{p}}}\mathrm{d}\zeta $, and let $\pi _{n,p}(z)$ be the generalized Bieberbach polynomial of degree $n$ for the pair $(G,0)$, which minimizes the integral $ \iint \limits _{G}{{\left| {{\varphi }_{p}^{\prime }(z)-{P}_{n}^{\prime }(z)}\right| }}^{p}\mathrm{d}\sigma _{z}$ in the class of all polynomials of degree not exceeding $\le n$ with $P_{n}(0)=0$, ${P}_{n}^{\prime }(0)=1$. In this paper we study the uniform convergence of the generalized Bieberbach polynomials $\pi _{n,p}(z)$ to $\varphi _{p}(z)$ on $\overline{G}$ with interior and exterior zero angles and determine its dependence on the properties of boundary arcs and the degree of their tangency.