In this paper, for a class of the complex nonlinear system control problems, based on the two-person zero-sum game theory, combined with the idea of approximate dynamic programming(ADP), the constrained optimization control problem is solved for the nonlinear systems with unknown system functions and unknown time-varying disturbances. In order to obtain the approximate optimal solution of the zero-sum game, the multilayer neural network is used to fit the evaluation network, the execution network and the disturbance network of ADP respectively. The Lyapunov stability theory is used to prove the uniform convergence, and the system control output converges to the neighborhood of the target reference value. Finally, the simulation example verifies the effectiveness of the algorithm.
The article surveys and evaluates various approaches to the logic of indeterminate situations. Two types of such situations are discussed: future contingents and quantum indeterminacy. Approaches differ according to whether they can salvage (i) classical tautologies (such as the law of excluded middle) as logical truths, (ii) bivalence and (iii) truth-functionality. What I call “the first solution” denies bivalence and either saves classical logical truths (supervaluations) or truth-functionality (multi-valued approach), but not both. The so-called “second solution”, saving all aforementioned features, harbors difficulties for the contingency of future contingents and is inapplicable in the quantum realm. Finally, the third solution saves bivalence but, at least in the case of quantum logic, abandons truth-functionality.
In previous studies, it has been shown that recombinant human neuregulin-1(rhNRG-1) is capable of improving the survival rate in animal models of doxorubicin (DOX)-induced cardiomyopathy; however, the underlying mechanism of this phenomenon remains unknown. In this study, the role of rhNRG-1 in attenuating doxorubicin-induce apoptosis is confirmed. Neonatal rat ventricular myocytes (NRVMs) were subjected to various treatments, in order to both induce apoptosis and determine the effects of rhNRG-1 on the process. Activation of apoptosis was determined by observing increases in the protein levels of classic apoptosis markers (including cleaved caspase-3, cytochrome c, Bcl-2, BAX and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining). The activation of Akt was detected by means of western blot analysis. The study results showed that doxorubicin increased the number of TUNEL positive cells, as well as the protein levels of cleaved caspase-3 and cytochrome c, and reduced the ratio of Bcl-2/Bax. However, all of these effects were markedly antagonized by pretreament with rhNRG-1. It was then further demonstrated that the effects of rhNRG-1 could be blocked by the phosphoinositole-3-kinase inhibitor LY294002, indicating the involvement of the Akt process in mediating the process. RhNRG-1 is a potent inhibitor of doxorubicin-induced apoptosis, which acts through the PI3K-Akt pathway. RhNRG-1 is a novel therapeutic drug which may be effective in preventing further damage from occurring in DOX-induced damaged myocardium., T. An, ... [et al.]., and Obsahuje seznam literatury
This paper deals with the identification of nonlinear dynamic systems by LOLIMOT algorithm, which allows to gradually build the neuro-fuzzy model of the identified system. The mathematical model as well as the identification algorithm for MISO and MIMO systems are described. The methodology is demonstrated on several examples. and Obsahuje seznam literatury
Depression is a complex disorder related to chronic inflammatory processes, chronic stress changes and a hippocampal response. There is a increasing knowledge about the role of glial cells in nutrient supply to neurons, maintenance of synaptic contacts and tissue homeostasis within the CNS. Glial cells, viewed in the past as passive elements with a limited influence on neuronal function, are becoming recognized as active partners of neurons and are starting to be discussed as a possible therapeutic target. Their role in the pathogenesis of depressive disorders is also being reconsidered. Attention is devoted to studies of the different types of antidepressants and their effects on transmembrane signaling, including levels of α subunits of G proteins in C6 glioma cells in vitro as a model of postsynaptic changes in vivo. These models indicate similarities in antidepressant effects on G proteins of brain cells and effector cells of natural immunity, natural killers and granulocytes. Thus, an antidepressant response can exhibit certain common characteristics in functionally different systems which also participate in disease pathogenesis. There are, however, differences in the astrocyte G-protein responses to antidepressant treatment, indicating that antidepressants differ in their effect on glial signalization. Today mainstream approach to neurobiological basis of depressive disorders and other mood illnesses is linked to abnormalities in transmembrane signal transduction via G-protein coupled receptors. Intracellular signalization cascade modulation results in the activation of transcription factors with subsequent increased production of a wide array of products including growth factors and to changes in cellular activity and reactivity., M. Páv, H. Kovářů, A. Fišerová, E. Havrdová, V. Lisá., and Obsahuje bibliografii a bibliografické odkazy
The review concerns a number of basic molecular pathways that play a crucial role in perception, transmission, and modulation of the stress signals, and mediate the adaptation of the vital processes in the cardiovascular system (CVS). These highly complex systems for intracellular transfer of information include stress hormones and their receptors, stress-activated phosphoprotein kinases, stress-activated heat shock proteins, and antioxidant enzymes maintaining oxidoreductive homeostasis of the CVS. Failure to compensate for the deleterious effects of stress may result in the development of different pathophysiological states of the CVS, such as ischemia, hypertension, atherosclerosis and infarction. Stress-induced dysbalance in each of the CVS molecular signaling systems and their contribution to the CVS malfunctioning is reviewed. The general picture of the molecular mechanisms of the stress-induced pathophysiology in the CVS pointed out the importance of stress duration and intensity as etiological factors, and suggested that future studies should be complemented by the careful insights into the individual factors of susceptibility to stress, prophylactic effects of 'healthy' life styles and beneficial action of antioxidant-rich nutrition., S. B. Pajović, M. B. Radojčić, D. T. Kanazir., and Obsahuje bibliografii a bibliografické odkazy
Neurogenic pulmonary edema (NPE), which is induced by acute spinal cord compression (SCC) unde r the mild (1.5 %) isoflurane anesthesia, is highly dependent on baroreflex-mediated bradycardia because a deeper (3 %) isoflurane anesthesia or atropine pretreatment comple tely abolished bradycardia occurrence and NPE development in rats subjected to SCC. The aim of the present study was to evaluate whether hypertension- associated impairment of baroreflex sensitivity might exert some protection against NPE developmen t in hypertensive animals. We therefore studied SCC-induced NPE development in two forms of experimental hypertension - spontaneously hypertensive rats (SHR) and salt hypertensive Dahl rats, which were reported to have reduced baroreflex sensitivity. SCC elicited NPE in both hypertensive models irrespective of their baroreflex sensitivity. It is evident that a moderate impairment of baroreflex sensitivity, which was demonstrated in salt hypertensive Dahl rats, does not exert sufficient protective effects against NPE development., J. Šedý, J. Kuneš, J. Zicha., and Obsahuje bibliografii a bibliografické odkazy
Neurohumoral substances and their receptors play a major part in the complex regulation of gastrointestinal motility and have therefore been the predominant targets for drug development. The numerous receptors involved in motility are located mainly on smooth muscle cells and neuronal structures in the extrinsic and intrinsic parts of the enteric nervous system. Within this system, receptor agonists and antagonists interacts directly to modify excitatory or inhibitory signals. In view of this complexity it is not surprising that our knowledge about the mechanisms of actions of the various neurohormones and drugs affecting gut motility has been rather fragmented and incomplete. However, recently substantial progress has been achieved, and drug therapy for gut dysmotility is emerging, based primarily on neurohumoral receptors. This paper presents a selective review of the neurohumoral regulatory mechanisms of gastrointestinal motility. In this context, the physiology and pharmacology of the smooth muscle cells, gastrointestinal motility and dysmotility, the enteric nervous system, gastrointestinal reflexes, and serotonin is presented. Further investigation and understanding of the transmitters and receptors involved in especially the reflex activation of peristalsis is crucial for the development of novel therapies for motility disorders., M. B. Hansen., and Obsahuje bibliografii