Arterial sites with low wall shear stress (WSS) are more prone to the development of atherosclerotic plaques, as was observed in carotid arteries in subjects with atherosclerosis risk factors. Type 2 diabetes mellitus (DM), hypertension, hyperlipidemia and other components of the metabolic syndrome, are associated with high risk for symptomatic cerebrovascular disease. It was shown by others that untreated type 2 DM is associated with lower WSS in common carotid arteries. However, the cardiovascular risk of type 2 DM could be modified by therapy. The aim of our study was to test the hypothesis that treated type 2 DM subjects with metabolic syndrome still have lower WSS in common carotid arteries than healthy controls. We enrolled 26 compensated DM subjects with metabolic syndrome, treated by metformin, statins and ACEI for more than 6 months, and 22 aged-comparable healthy controls. Wall shear rate (WSR) was used as a measure of WSS. A linear 3-11 MHz probe was used to measure blood velocity and internal diameter in the common carotid arteries. We compared observed values of WSR adjusted for age by ANCOVA. Wall shear rate was significantly lower in DM group than in control subjects: peak (systolic) values of wall shear rate were 410±130 s-1 vs. 487±111 s-1 (p<0.005). DM subjects had significantly lower WSR, because of both thinner lumen and slower blood flow velocities. Lower WSR was accompanied by higher IMT (0.73±0.12 mm vs. 0.64±0.11 mm, p<0.001). Treated subjects with compensated type 2 DM with metabolic syndrome still have atherogenic hemodynamic profile. These findings might help to understand faster progression of atherosclerosis in diabetic subjects with metabolic syndrome despite up-to-date medication., E. Chytilová ...[et al.]., and Obsahuje seznam literatury
Hypoxic pulmonary hypertension (HPH) is a syndrome characterized by the increase of pulmonary vascular tone and the structural remodeling of peripheral pulmonary arteries. Mast cells have an important role in many inflammatory diseases and they are also involved in tissue remodeling. Tissue hypoxia is associated with mast cell activation and the release of proteolytic enzymes, angiogenic and growth factors which mediate tissue destruction and remodeling in a variety of physiological and pathological conditions. Here we focused on the role of mast cells in the pathogenesis of hypoxic pulmonary hypertension from the past to the present., H. Maxová, J. Herget, M. Vízek., and Obsahuje seznam literatury
Obesity is linked to a low-level chronic inflammatory state that may contribute to the development of associated metabolic complications. Retinol-binding protein 4 (RBP4) is an adipokine associated with parameters of obesity including insulin resistance indices, body mass index, waist circumference, lipid profile, and recently, with circulating inflammatory factors. Due to the infiltration of adipose tissue in obesity by macrophages derived from circulating monocytes and, on the other hand, the existence of a close genetic relationship between adipocytes and macrophages, we decided to examine if RBP4 is expressed in monocytes and/or primary human macrophages. While we did not detect expression of RBP4 in undifferentiated monocytes, RBP4 expression became evident during the differentiation of monocytes into macrophages and was highest in differentiated macrophages. Once we demonstrated the expression of RBP4 in macrophages, we checked if RBP4 expression could be regulated by inflammatory stimuli such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), or the endotoxin lipopolysaccharide (LPS). We observed that while RBP4 expression was strongly inhibited by TNF-α and LPS, it was not affected by IL-6. Our results highlight the complexity behind the regulation of this adipokine and demonstrate that RBP4 expression in macrophages could be modulated by inflammatory stimuli., M. Broch ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Apolipoprotein (apo) B-100 is a key protein compound of plasma lipid metabolism. This protein, as a sole component of LDL particles, to a great extent controls the homeostasis of LDL cholesterol in the plasma. Therefore, this protein and its structural variants play an important role in development of hyperlipidemia and atherosclerosis. Intensive research into the structure and biological functions of apoB-100 has led to identification of its complete structure as well as the responsible binding sites. With the development of the methods of molecular biology, some structural variants of the apoB-100 protein that directly affect its binding properties have been described. These are mutations leading to amino acid substitution at positions 3500 (R3500Q and R3500W) and 3531 (R3531C) that have been shown to decrease the binding affinity of apoB-100 in vitro. However, only the former mutations have been unequivocally demonstrated to cause hyperlipidemia in vivo. This minireview is aimed to discuss the impact of apoB-100 and its structural variants on plasma lipid metabolism and development of hyperlipidemia., M. Vrablík, R. Češka, A. Hořínek., and Obsahuje bibliografii
A characteristic of mast cells is the degranulation in response to various stimuli. Here we have investigated the effects of various physical stimuli in the human mast-cell line HMC-1. We have shown that HMC-1 express the transient receptor potential channels TRPV1, TRPV2 and TRPV4. In the whole-cell patchclamp configuration, increasing mechanical stress applied to the mast cell by hydrostatic pressure (–30 to –90 cm H2 O applied via the patch pipette) induced a current that could be inhibited by 10 µM of ruthenium red. This current was also inhibited by 20 µM SKF96365, an inhibitor that is among TRPV channels specific for the TRPV2. A characteristic of TRPV2 is its activation by high noxious temperature; temperatures exceeding 50 °C induced a similar ruthenium-red-sensitive current. As another physical stimulus, we applied laser light of 640 nm. Here we have shown for the first time that the application of light (at 48 mW for 20 min) induced an SKF96365-sensitive current. All three physical stimuli that led to activation of SKF96365-sensitive current also induced pronounced degranulation in the mast cells, which could be blocked by ruthenium red or SKF96365. The results suggest that TRPV2 is activated by the three different types of physical stimuli. Activation of TRPV2 allows Ca2+ ions to enter the cell, which in turn will induce degranulation. We, therefore, suggest that TRPV2 plays a key role in mast-cell degranulation in response to mechanical, heat and red laser-light stimulation., D. Zhang ... [et al.]., and Obsahuje seznam literatury
The aim of this work is to present the efficacy of a previously introduced computational procedure, developed for evaluation of vascular responsiveness. On this reason, as an example a common study of noradrenaline (NA) effect on a rat renal artery under in vitro conditions was arbitrarily selected. The response of the arterial segment to NA doses (0.1-10 μg) was digitally recorded on a PC and employed to develop mathematical model of NA effect. Using the model, the following NA effect variables were determined: the vessel sensitivity parameter, mean effect time and rate constant, respectively, characterizing the effect intensity, duration, and regression and also classic response variables: the maximal effect and time of the maximal effect. The two-way analysis of variance followed by Bonferroni’s test revealed a significant influence of the increasing NA dose on the vessel sensitivity parameter and mean effect time. These findings indicated nonlinearity of processes underlying NA effect on the rat renal artery over the given range of NA doses. The procedure exemplified has the potential for use as an effective adjunct to routine studies of vascular responsiveness as it enables the extraction of meaningful information which cannot by obtained by common manual evaluation procedures., M. Ďurišová, L. Dedík, V. Kristová, R. Vojtko., and Obsahuje bibliografii a bibliografické odkazy
The biochemical model of excitation-contraction coupling in cardiomyocyte is presented and the validity of simulations of both physiological and pathological processes is discussed. The model of regulatory and actomyosin subsystems, even if it is rather simple in its regulatory subunit, gives results well consistent with experimental data. Specifically, intracellular free calcium levels ([Ca2+]i) were computed under various states of sarcoendoplasmic reticular Ca2+-ATPase (SERCA2) and compared to experimental findings. Computed results reproduced well both the increase in resting [Ca2+]i level and the attenuation of [Ca2+]i decline commonly observed in heart failure. Thus the computational simulations could help to identify core relations in studied systems by comparing results obtained using similar models of various complexities., M. Mlček, J. Neumann, O. Kittnar, V. Novák., and Obsahuje bibliografii
It is well known that the consumption of moderate doses of alcohol leads to the increase of HDL-cholesterol (HDL-C). Atheroprotectivity of HDL particles is based primarily on their role in reverse cholesterol transport (RCT). In the study with a crossover design 13 male volunteers were studied in two different regimens: i) drinking of 36 g alcohol daily and ii) drinking only non-alcoholic beverages, to test whether alcohol-induced increase of HDL cholesterol can affect cholesterol efflux (CHE) from cell culture of labeled human macrophages. Alcohol consumption induced significant (p<0.05) increases of HDL cholesterol from 1.25±0.32 to 1.34±0.38 mmol/l and Apo A1 from 1.34±0.16 to 1.44±0.19 g/l. These changes were combined with a slight increase of cholesterol efflux from 13.8±2.15 to 14.9±1.85 % (p=0.059). There were significant correlations between individual changes of HDL-C and Apo A1 concentrations and individual changes of CHE (0.51 and 0.60, respectively). In conclusion, moderate alcohol consumption changes the capacity of plasma to induce CHE only at a border line significance., I. Králová Lesná ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
We evaluate the mRNA expression of monocarboxylate transporters 1 and 4 (MCT1 and MCT4) in skeletal muscle (soleus, red and white gastrocnemius), heart and liver tissues in mice submitted to a single bout of swimming exercise at the maximal lactate steady state workload (MLSSw). After 72 h of MLSS test, the animals were submitted to a swimming exercise session for 25 min at individual MLSSw. Tissues and muscle samples were obtained at rest (control, n=5 ), immediately (n=5 ), 5 h (n=5 ) and 10 h (n=5 ) after exercise for determination of the MCT1 and MCT4 mRNA expression (RT-PCR). The MCT1 mRNA expression in liver increased after 10 h in relation to the control, immediate and 5 h groups, but the MCT4 remained unchanged. The MCT1 mRNA expression in heart increased by 31 % after 10 h when compared to immediate, but no differences were observed in relation to the control group. No significant differences were observed for red gastrocnemius in MCT1 and MCT4 mRNA expression. However, white gastrocnemius increased MCT1 mRNA expression immediately when compared to rest, 5 and 10 h test groups. In soleus muscle, the MCT1 mRNA expression increased immediately, 5 and 10 h after exercise when compared to the control. In relation to MCT4 mRNA expression, the soleus increased immediately and 10 h after acute exercise when compared to the control group. The soleus, liver and heart were the main tissues that showed improved the MCT1 mRNA expression, indicating its important role in controlling MLSS concentration in mice., G. G. de Araujo, C. A. Gobatto, F. de Barros Manchado-Gobatto, L. F. M. Teixeira, I. G. M. dos Reis, L. C. Caperuto, M. Papoti, S. Bordin, C. R: Cavaglieri, R. Verlengia., and Obsahuje bibliografii
Glucose-dependent insulinotropic peptide (GIP) contributes to incretin effect of insulin secretion which is impaired in Type 2 diabetes mellitus. The aim of this study was to introduce a simple meal test for evaluation of GIP secretion and action and to examine GIP changes in Type 2 diabetic patients. Seventeen Type 2 diabetic patients, 10 obese non-diabetic and 17 nonobese control persons have been examined before and after 30, 60 and 90 min stimulation by meal test. Serum concentrations of insulin, C-peptide and GIP were estimated during the test. Impaired GIP secretion was found in Type 2 diabetic patients as compared with obese non-diabetic and non-obese control persons. The AUCGIP during 90 min of the meal stimulation was significantly lower in diabetic patients than in other two groups (p<0.03). Insulin concentration at 30 min was lower in diabetic than in non-diabetic persons and the GIP action was delayed. The ΔIRI/ΔGIP ratio increased during the test in diabetic patients, whereas it progressively decreased in obese and nonobese control persons. Simple meal test could demonstrate impaired GIP secretion and delayed insulin secretion in Type 2 diabetic patients as compared to obese non-diabetic and nonobese healthy control individuals., J. Škrha., and Obsahuje bibliografii a bibliografické odkazy