The aging process is associated with a decline in mitochondrial functions. Mitochondria dysfunction is involved in initiation and progression of many health problems including neuromuscular, metabolic and cardiovascular diseases. It is well known that endurance exercise improves mitochondrial function, especially in the elderly. However, recent studies have demonstrated that resistan ce training lead also to substantial increases in mitochondrial function in skeletal muscle. A comprehensive understanding of the cellular mechanisms involved in the skeletal muscle mitochondrial adaptations to exercise training in healthy elderly subjects, can help practitioners to design and prescribe more effective exercise trainings., M. M. Ziaaldini, S. R. A. Hosseini, M. Fathi., and Obsahuje bibliografii
The review aims to summarize current knowledge on the effects of moderate alcohol consumption ( 1 standard drink a day for women; 2 drinks a day for men) on triglyceride concentration in circulation. Current evidence suggests that the relationship between alcohol consumption and triglyceridemia is J -shaped. Triglyceridemia is lowest in subjects who drink 10 -20 g/alcohol a day. Such a J -shaped association is comparable with that described for the relationship between alcohol and cardiovascular risk. On the contrary, alcohol taken with a meal increases and prolongs postprandi al triglyceridemia. Such effects of alcohol consumption may be at least partially explained by the effects of ethanol on lipoprotein lipase (LPL) activity. Long -term moderate alcohol consumption increases LPL activity, which may explain its TG -lowering effect. On the other hand, LPL activity is acutely downregulated by ethanol, which explains increased postprandial triglyceridemia., J. Kovář, K. Zemánková., and Obsahuje bibliografii
Numerous countermeasures have been proposed to minimize microgravity-induced physical deconditioning, but their benefits are limited. The present study aimed to investigate whether personalized aerobic exercise based on artificial gravity (AG) mitigates multisystem physical deconditioning. Fourteen men were assigned to the control group (n=6) and the countermeasure group (CM, n=8). Subjects in the CM group were exposed to AG (2 Gz at foot level) for 30 min twice daily, during which time cycling exercise of 80-95 % anaerobic threshold (AT) intensity was undertaken. Orthostatic tolerance (OT), exercise tests, and blood assays were determined before and after 4 days head-down bed rest (HDBR). Cardiac systolic function was measured every day. After HDBR, OT decreased to 50.9 % and 77.5 % of pre-HDBR values in control and CM groups, respectively. Exercise endurance, maximal oxygen consumption, and AT decreased to 96.5 %, 91.5 % and 91.8 % of pre-HDBR values, respectively, in the control group. Nevertheless, there were slight changes in the CM group. HDBR increased heart rate, sympathetic activity, and the pre-ejection period, but decreased plasma volume, parasympathetic activity and left-ventricular ejection time in the control group, whereas these effects were eliminated in the CM group. Aldosterone had no change in the control group but increased significantly in the CM group. Our study shows that 80-95 % AT aerobic exercise based on 2 Gz of AG preserves OT and exercise endurance, and affects body fluid regulation during short-term HDBR. The underlying mechanisms might involve maintained cardiac systolic function, preserved plasma volume, and improved sympathetic responses to orthostatic stress., X.-T. Li, C.-B. Yang, Y.-S. Zhu, J. Sun, F. Shi, Y.-C. Wang, Y. Gao, J.-D. Zhao, X.-Q. Sun., and Obsahuje bibliografii
We aimed to explore the effects of melatonin and n-3 polyunsaturated fatty acids (PUFA) supplementation on plasma and aortic nitric oxide (NO) levels in isoproterenol (Iso) affected spontaneously hypertensive (SHR) and Wistar rats. Untreated control rats were compared with Iso injected (118 mg/kg, s.c.) rats, and Iso injected plus supplemented with melatonin (10 mg/kg, p.o.) or PUFA (1.68 g/kg, p.o.) for two months. Plasma and aortic basal, L-NAME inhibited, adrenaline and acetylcholine stimulated NO were determined using Griess method. Plasma NO levels were lower in SHR versus Wistar rats. Iso decreased NO in Wistar while not in SHR. PUFA but not melatonin intake of Iso treated SHR increased plasma NO along with a decrease in systolic blood pressure. Basal aortic NO level was higher in SHR than Wistar rats and not altered by Iso. Intake of melatonin increased but PUFA decreased basal NO levels in Wistar+Iso and did not affect in SHR+Iso rats. Acetylcholine and adrenaline induced aortic NO release was significantly increased in Wistar+Iso but not SHR+Iso group. Melatonin intake increased Ach induced aortic NO in Wistar+Iso and SHR+Iso groups, whereas there was no effect of PUFA intake. Findings suggest that PUFA modulates plasma and melatonin aortic NO levels of isoproterenol affected rats in a strain-dependent manner., K. K. Chaudagar, C. Viczenczova, B. Szeiffova Bacova, T. Egan Benova, M. Barancik, N. Tribulova., and Obsahuje bibliografii
Transient receptor potential A1 (TRPA1) is an excitatory ion channel that functions as a cellular sensor, detecting a wide range of proalgesic agents such as environmental irritants an d endogenous products of inflammation and oxidative stress. Topical application of TRPA1 agonists produces an acute nociceptive response through peripheral release of neuropeptides, purines and other transmitters from activated sensory nerve endings. This, in turn, further regulates TRPA1 activity downstream of G-protein and phospholipase C -coupled signaling cascades. Despite the important physiological relevance of such regulation leading to nociceptor sensitization and consequent pain hypersensitivity, th e specific domains through which TRPA1 undergoes post -translational modifications that affect its activation properties are yet to be determined at a molecular level. This review aims at providing an account of our current knowledge on molecular basis of r egulation by neuronal inflammatory signaling pathways that converge on the TRPA1 channel protein and through modification of its specific residues influence the extent to which this channel may contribute to pain., A. Kádková, V. Synytsya, J. Krusek, L. Zímová, V. Vlachová., and Obsahuje bibliografii
Different strategies have been developed in the last decade to obtain fat grafts as rich as possible of mesenchymal stem cells, so exploiting their regenerative potential. Recently, a new kind of fat grafting, called "nanofat", has been obtained after several steps of fat emulsification and filtration. The final liquid suspension, virtually devoid of mature adipocytes, would improve tissue repair because of the presence of adipose mesenchymal stem cells (ASCs). However, since it is probable that many ASCs may be lost in the numerous phases of this procedure, we describe here a novel version of fat grafting, which we call "nanofat 2.0", likely richer in ASCs, obtained avoiding the final phases of the nanofat protocol. The viability, the density and proliferation rate of ASCs in nanofat 2.0 sample were compared with samples of nanofat and simple lipoaspirate. Although the density of ASCs was initially higher in lipoaspirate sample, the higher proliferation rate of cells in nanofat 2.0 virtually filled the gap within 8 days. By contrast, the density of ASCs in nanofat sample was the poorest at any time. Results show that nanofat 2.0 emulsion is considerably rich in stem cells, featuring a marked proliferation capability., D. Lo Furno, S. Tamburino, G. Mannino, E. Gili, G. Lombardo, M. S. Tarico, C. Vancheri, R. Giuffrida, R. E. Perrotta., and Obsahuje bibliografii
Nitric oxide (NO) is an important endogenous mediator with significant role in the respiratory system. Many endogenous and exogenous factors influence the synthesis of NO and its level is significantly changed during the inflammation. Analysis of nasal nitric oxide (nNO) is not validated so far as the diagnostic method. There is a lack of reference values with possible identification of factors modulating the nNO levels. In healthy adult volunteers (n=141) we studied nasal NO values by NIOX MINO® (Aerocrine, Sweden) according to the recommendations of the ATS & ERS. Gender, age, height, body weight, waist-to-hip ratio, FEV1/FVC, PEF and numbers of le ukocytes, eosinophils, basophils and monocytes were studied as potential variables influencing the levels of nNO. The complexity of the results allowed us to create a homogenous group for nasal NO monitoring and these data can be used further as the reference data for given variables. Because of significant correlation between nNO and exhaled NO, our results support the "one airway - one disease" concept. Reference values of nasal NO and emphasis of the individual parameters of tested young healthy population may serve as a starting point in the non-invasive monitoring of the upper airway inflammation., M. Antosova, D. Mokra, I. Tonhajzerova, P. Mikolka, P. Kosutova, M. Mestanik, L. Pepucha, J. Plevkova, T. Buday, V. Calkovsky, A. Bencova., and Obsahuje bibliografii
Proximal resistance vessels, such as the mesenteric arteries, contribute substantially to the peripheral resistance. The reactivity of resistance vessels to vasoactive substance like natriuretic peptides plays an important role in the regulation of blood pressure. In current study, we investigated the reactivity of mesenteric arteries to atrial natriuretic peptide (ANP), a well known vasodilating factor, in spontaneously hypertensive rats (SHR), as well as the effects of exercise training on it. As a result, ANP-induced vasorelaxation was attenuated in SHR with significantly increased phosphodiesterase type 5 (PDE5), and decreased cGMP/ANP ratio, compared with WKY rats as control. Intriguingly, the decreased reactivity to ANP in SHR was markedly reversed by exercise training. In addition, ANP resistance of in vitro mesenteric arteries was diminished by sildenafil a potent selective inhibitor of PDE5. In conclusion, ANP resistance occurs in resistance vessels of SHR, suggesting predisposition to hypertension, which can be reversed by exercise., Jun Yu, Bing Zhang, Xing-Lu Su, Ru Tie, Pan Chang, Xue-Ce Zhang, Jian-Bang Wang, Ge Zhao, Miao-Zhang Zhu, Hai-Feng Zhang, Bao-Ying Chen., and Obsahuje bibliografii
The present study investigated the effects of nesfatin-1 on gastric distension (GD)-responsive neurons via an interaction with corticotropin-releasing factor (CRF) receptor signaling in the ventromedial hypothalamic nucleus (VMH), and the potential regulation of these effects by hippocampal projections to VMH. Extracellular single-unit discharges were recorded in VHM following administration of nesfatin-1. The projection of nerve fibers and expression of nesfatin-1 were assessed by retrograde tracing and fluoro-immunohistochemical staining, respectively. Results showed that there were GD-responsive neurons in VMH; Nesfatin-1 administration and electrical stimulation of hippocampal CA1 sub-region altered the firing rate of these neurons. These changes could be partially blocked by pretreatment with the non-selective CRF antagonist astressin-B or an antibody to NUCB2/nesfatin-1. Electrolytic lesion of CA1 hippocampus reduced the effects of nesfatin-1 on VMH GD-responsive neuronal activity. These studies suggest that nesfatin-1 plays an important role in GD-responsive neuronal activity through interactions with CRF signaling pathways in VMH. The hippocampus may participate in the modulation of nesfatin-1-mediated effects in VMH., H. Feng, Q. Wang, F. Guo, X. Han, M. Pang, X. Sun, Y. Gong, L. Xu., and Obsahuje bibliografii
The maintenance of plasma sodium concentration within a narrow limit is crucial to life. When it differs from normal physiological patterns, several mechanisms are activated in order to restore body fluid homeostasis. Such mechanisms may be vegetative and/or behavioral, and several regions of the central nervous system (CNS) are involved in their triggering. Some of these are responsible for sensory pathways that per ceive a disturbance of the body fluid homeostasis and transmit information to other regions. These regions, in turn, initiate adequate adjustments in order to restore homeostasis. The main cardiovascular and autonomic responses to a change in plasma sodium concentration are: i) changes in arterial blood pressure and heart rate; ii) changes in sympathetic activity to the renal system in order to ensure adequate renal sodium excretion/absorption, and iii) the secretion of compounds involved in sodium ion home ostasis (ANP, Ang-II, and ADH, for example). Due to their cardiovascular effects, hypertonic saline solutions have been used to promote resuscitation in hemorrhagic patients, thereby increasing survival rates following trauma. In the present review, we exp ose and discuss the role of several CNS regions involved in body fluid homeostasis and the effects of acute and chronic hyperosmotic challenges., M. C. Dos Santos Moreira, L. M. Naves, S. M. Marques, E. F. Silva, A. C. S. Rebelo, E. Colombari, G. R. Pedrino., and Obsahuje bibliografii