The consistency of the least trimmed squares estimator (see Rousseeuw \cite{Rous} or Hampel et al. \cite{HamRonRouSta}) is proved under general conditions. The assumptions employed in paper are discussed in details to clarify the consequences for the applications.
n−−√-consistency of the least trimmed squares estimator is proved under general conditions. The proof is based on deriving the asymptotic linearity of normal equations.
Asymptotic normality of the least trimmed squares estimator is proved under general conditions. At the end of paper a discussion of applicability of the estimator (including the discussion of algorithm for its evaluation) is offered.
Large animal models to explore the safety and tolerability of novel therapeutic approaches for Huntington’s disease (HD) are in exploration to achieve higher translational reliability in future studies. Recently, a Libechov minipig has been established as one new transgenic (Tg) large animal model for HD. We here discuss the advantages and limitations in using this model in HD with regards to breeding, housing, handling, and with respect to homology to humans and ethical considerations. A group of TgHD and wild type (WT) female minipigs (n = 36) was used to gain first evidence about abovementioned aspects. It is concluded that Libechov minipigs may fulfill an important role to bridge the gap between rodents and non‑human primates in the translation to humans. and S. Schramke, R. Schubert, F. Frank, M. Wirsig, M. Fels, N. Kemper, V. Schuldenzucker, R. Reilmann
The life cycle of the swim bladder nematode Huffmanela huffmani Moravec, 1987 (Trichinelloidea: Trichosomoididae), an endemic parasite of centrarchid fishes in the upper spring run of the San Marcos River in Hays County, Texas, USA, was experimentally completed. The amphipods Hyalella cf. azteca (Saussure), Hyalella sp. and Gammarus sp. were successfully infected with larvated eggs of Huffmanela huffmani. After ingestion of eggs of H. huffmani by experimental amphipods, the first-stage larvae hatch from their eggshells and penetrate through the digestive tract to the hemocoel of the amphipod. Within about 5 days in the hemocoel of the experimental amphipods at 22 °C, the larvae presumably attained the second larval stage and were infective for the experimental centrarchid definitive hosts, Lepomis spp. The minimum incubation period before adult nematodes began laying eggs in the swim bladders of the definitive hosts was found to be about 7.5 months at 22 °C. This is the first experimentally completed life cycle within the Huffmanelinae., McLean L. D. Worsham, David G. Huffman, František Moravec, J. Randy Gibson., and Obsahuje bibliografii
Co-occurrence of species with similar trophic requirements, such as odonates, seems to depend both on them occupying different microhabitats and differing in their life-cycles. The life cycles of the dragonflies Boyeria irene and Onychogomphus uncatus were studied in two consecutive years, mainly by systematic sampling of larvae in seven permanent head courses that constitute the upper basin of the River Águeda, western Spain, in the central part of the ranges of these two species. The size ranges of the last five larval stadia of both species were established based on biometric data. The eggs of the egg-overwintering aeshnid hatched in late spring and early summer and for the gomphid hatching peaked in middle-late summer. Both species showed mixed voltinism with "cohort splitting". B. irene had a dominant three-year development (partivoltinism), with some developing in two years (semivoltinism). O. uncatus requires four, sometimes three years to complete development (all partivoltine). B. irene larvae spent the winter before emergence in the last three, maybe four stadia, as a "summer species". O. uncatus mainly behaved as a "spring species", most larvae spending the last winter in the final larval stadium.
A key stage in the design of an effective and efficient genetic algorithm is the utilisation of dornain specific knowledge. Once appropriate features have been identified, genetic operators can then be designed which inanipulate these features in well defined ways. In particular, the crossover operátor is designed so as to preserve in any offspring features cominon to both parental solutions and to guarantee that ordy features that appear in the parents appear in the offspring. Forma analysis [1] provides a well-defined frarnework for such a design process.
In this paper we consider the class of bisection problems. Features proposed for set recombination [2] are shown to be redundant when applied to bisection problems. Despite this inherent redundancy, approaches based on such features háve been successfully applied to graph bisection problems [3].
In order to overcome this redundancy and to obtain performance gains over previous genetic algorithm based approaches to graph bisection a natural choice of features is one based on node pairs. However, such features result in a crossover operator that displays degenerative behaviour and is of no practical use.
For polyphagous predators, the link between food consumption and reproduction is not always straightforward, and instead may reflect that even predators with very broad diets may have reproductive tactics that are tied to consumption of a restricted range of prey. We studied the consumption and use of two prey species for reproduction by the ladybird, Harmonia axyridis Pallas. This polyphagous predator feeds on both pea aphids [Acyrthosiphon pisum (Harris)] and larvae of the alfalfa weevil [Hypera postica (Gyllenhal)] that it encounters when foraging in alfalfa fields. When provided a diet of pea aphids or of alfalfa weevils and/or sugar water, females of H. axyridis laid eggs in large numbers only on the diet of aphids. Females laid no eggs on diets of weevils or sugar alone, and laid only small numbers of eggs when the two foods were provided together. When placed on a diet of aphids, females began laying eggs earlier, and laid more eggs altogether, when they had previously fed on weevils versus sugar water. The predators' consumption rates of aphids were greater than their consumption rates of weevils, and they produced less frass per mg of prey consumed on an aphid versus weevil diet. The predators searched more actively when maintained on a weevil versus aphid diet. Hence, lower rates of food intake and assimilation, and greater allocation of nutrients and energy to searching, appear to contribute to the reduced egg production of H. axyridis females that feed on weevils versus aphids. Alfalfa weevils are also less suitable prey than pea aphids for larval survival and development of H. axyridis. Thus, the differing responses of H. axyridis adults to these two prey types may reflect that these predators are well adapted in the linking of their feeding and reproductive behavior.