The endothelium of different organs displays a remarkable heterogeneity, although it presents many common functional and morphological features. However, despite our knowledge of heterogeneity among endothelial cells from different sites, the differences between brain microvascular endothelial cells (BMEC) and coronary microvascular endothelial cells (CMEC) are poorly defined. The aim of this study was to investigate whether BMEC are distinct from CMEC at the protein level. Using the proteomic approach, we comparatively analyzed the proteome of cultured BMEC and CMEC. We reproducibly separated over 2000 polypeptides by using two-dimensional electrophoresis (2-DE) at pH range of 3-10. Using PDQuest software to process the 2-DE gel images, forty-seven protein spots were differentially expressed in the two-endothelial cells. Of these, thirty-five proteins are highly expressed in BMEC, whereas twelve proteins are highly expressed in CMEC. Fifteen proteins in BMEC and seven proteins in CMEC were identified with high confidence by matrix-associated laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS). Our data suggested that BMEC and CMEC were different in several aspects including cytokine and growth-related molecules, stress-related proteins, metabolic enzymes, signal transduction proteins and others. The identification of a set of proteins preferentially expressed in BMEC and CMEC provided new data on the heterogeneity of the endothelium., L. Lu, P.-Y. Yang, Y.-Ch. Rui, H. Kang, J. Zhang, J.-P. Zhang, W.-H. Feng., and Obsahuje bibliografii a bibliografické odkazy
The aim of study was to gain a deeper knowledge about local and systemic changes in photosynthetic processes and sugar production of pepper infected by Obuda pepper virus (ObPV) and Pepper mild mottle virus (PMMoV). PSII efficiency, reflectance, and gas exchange were measured 48 and/or 72 h after inoculation (hpi). Sugar accumulation was checked 72 hpi and 20 d after inoculation (as a systemic response). Inoculation of leaves with ObPV led to appearance of hypersensitive necrotic lesions (incompatible interaction), while PMMoV caused no visible symptoms (compatible interaction). ObPV (but not PMMoV) lowered Fv/Fm (from 0.827 to 0.148 at 72 hpi). Net photosynthesis decreased in ObPV-infected leaves. In ObPV-inoculated leaves, the accumulation of glucose, fructose, and glucose-6-phosphate was accompanied with lowered sucrose, maltoheptose, nystose, and trehalose contents. PMMoV inoculation increased the contents of glucose, maltose, and raffinose in the inoculated leaves, while glucose-6-phosphate accummulated in upper leaves., A. Janeczko, M. Dziurka, G. Gullner, M. Kocurek, M. Rys, D. Saja,
A. Skoczowski, I. Tóbiás, A. Kornas, B. Barna., and Obsahuje bibliografii
Fifteen different mitochondrial haplotypes of the mtDNA gene COI encoding cytochrome C oxidase subunit I were identified in the 127 individuals of Adalia bipunctata studied. Two mitochondrial haplotypes, H9 and H10, differed greatly from the others. The mitochondrial polymorphism in A. bipunctata is ancient, though its age remains to be evaluated. It is shown that mitochondrial haplotypes H9 and H10 and others coexisted in the original population of A. bipunctata before it spread throughout Eurasia from Western Europe to the Baikal Area, and before the differentiation of the subspecies A. bipunctata fasciatopunctata, which differs from the European form in its elytral pattern. In order to evaluate the possible origin of the ancient mitochondrial haplotypes in the gene pool of A. bipunctata sequences of the mtDNA gene COI and of the rRNA second internal transcribed spacer of the four species of Adalia: A. bipunctata, A. decempunctata, A. frigida and A. tetraspilota, were compared. It is suggested that infection with Rickettsia had an important role in the preservation of the mitochondrial haplotypes H9 and H10 during the evolution of Adalia., Ilya Zakharov, Elena Shaikevich., and Obsahuje seznam literatury
Increase of harmful radiation to the Earth’s surface due to ozone depletion results in higher exposure to harmful ultraviolet- B radiation (UV), while fluctuations in seawater salinity may alter water density, ionic concentration, nutrient uptake, and osmotic pressure. This study evaluated the effects of salinity and UV on metabolism and morphology of Acanthophora spicifera (M.Vahl) Børgesen. Water with 30 and 37 psu [g(salt) kg-1(sea water)] was used for experiments during 7 d of exposure to UV (3 h per day). We demonstrated that UV treatment predisposed, irrespective of salinity, A. spicifera to a decrease in its growth rate and cell viability, as well as affected its morphological parameters. After exposure to PAR + UVA + UVB (PAB), samples showed structural changes and damage, such as increasing cell wall thickness and chloroplast disruption. Our results indicate that UV led to dramatic metabolic changes and cellular imbalances, but more remarkable changes were seen in samples exposed to high salinity., D. T. Pereira, C. Simioni, L. C. Ouriques, F. Ramlov, M. Maraschin, N. Steiner, F. Chow, Z. L. Bouzon, É. C. Schmidt., and Obsahuje bibliografii
The growth parameters of the green lacewing, Chrysoperla nipponensis-B (Okamoto), were studied under laboratory conditions. The highest mortality was recorded in the immature stages (instars 1st, 2nd, 3rd and pupae) of C. nipponensis fed on the eggs of Corcyra cephalonica (37.26%). The sex ratios (proportion of female to male) when reared on the eggs of C. cephalonica and an artificial diet with ginger were 0.93 : 1.00 and 0.87 : 1.00, respectively. The maximum life spans of females reared on the eggs of C. cephalonica and an artificial diet with ginger were 63 and 64 days, respectively. The females reared on the eggs of C. cephalonica produced the highest number of eggs (10.4) on the fifth day of oviposition, whereas on the artificial diet with ginger it was 9.26 on the eighth day of oviposition. The net reproductive rate (Ro) and maximum gross reproductive rate (GRR) of C. nipponensis fed on the eggs of C. cephalonica were 69.50 and 223.10 females per female per generation, respectively, whereas for the artificial diet with ginger they were 117.24 and 236.89 females per female per generation, respectively. Mean generation time (T) was 37.06 and 48.16 for the eggs of C. cephalonica and artificial diet with ginger, respectively. The intrinsic rate of natural increase (r) was 0.11 and 0.09 females per female per day for the eggs of C. cephalonica and artificial diet with ginger, respectively. The finite rate of increase (λ) was 1.12 and 1.11 females per female per day for the eggs of C. cephalonica and artificial diet with ginger, respectively. The population doubling time (DT) was 6.05 days on the diet of eggs of C. cephalonica and 7.00 on the artificial diet with ginger., Shafique A. Memon, Dzolkhifli Omar, Rita Muhamad, Ahamd S. Sajap, Norhayu Asib, Arfan A. Gibal., and Obsahuje bibliografii
The rare and endangered plant, Begonia fimbristipula, shows red and green phenotypes, differentiated by a coloration of the abaxial leaf surface. In this study, we compared morphological and physiological traits of both phenotypes. The results showed that the red phenotype contained a significantly higher chlorophyll content, closer arrangement of chloroplasts, and a more developed grana. In addition, the red phenotype transferred significantly more light energy into the electron transport during the photoreaction. Similarly, the maximum photosynthetic rate, instantaneous water-use and light-use efficiencies of the red B. fimbristipula were all significantly higher than those of the green individuals. The differentiation between these two phenotypes could be caused by their different survival strategies under the same conditions; epigenetic variations may be in some correlation with this kind of phenotype plasticity. Red B. fimbristipula has an advantage in resource acquisition and utilization and possesses a better self-protection mechanism against changes in environmental conditions, therefore, it might adapt better to global climate change compared to the green phenotype. Further studies on the possible epigenetic regulation of those phenotypic differentiations are needed., Y. Wang, L. Shao, J. Wang, H. Ren, H. Liu, Q. M. Zhang, Q. F. Guo, X. W. Chen., and Seznam literatury
a1_Photosynthetic gas exchange, dry mass production, water relations and inducibility of crassulacean acid metabolism (CAM) pathway as well as antioxidative protection during the C3-CAM shift were investigated in Sedum album and Sedum stoloniferum from Crassulaceae under water stress for 20 days. Leaf relative water content (RWC), leaf osmotic and water potential decreased with increasing water stress in both studied species. Significant reduction in dry matter production and leaf thickness was detected only in S. stoloniferum after 20-d water stress. Δtitratable acidity and phosphoenolpyruvate carboxylase (PEPC) activity in S. album responded to drought at early stages of stress treatment, continued to increase throughout the entire stress period and reached levels 15 times higher than those in well-watered plants. In S. stoloniferum, however, both parameters responded later and after a transient increase declined again. In S. stoloniferum, in spite of increase by drought stress, net night-time CO2 assimilation was negative resembling a C3-like pattern of gas exchange. Catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) activities increased in plants subjected to mild water stress while declined as the stress became severe. Although malondialdehyde (MDA) content was higher in drought-stressed S. stoloniferum, the increase in the concentration of hydrogen peroxide (H2O2) that may act as a signal for C3-CAM transition was higher in S. album compared with S. stoloniferum. In drought-stressed plants, SOD activity showed a clear diurnal fluctuation that was more steadily expressed in S. album. In addition, such pattern was observed for CAT only in S. album. We concluded that temporal and diurnal fluctuation patterns in the activity of antioxidant enzymes depended on duration of drought stress and was related to the mode of photosynthesis and degree of CAM induction., a2_According to our results, S. stoloniferum developed a low degree of CAM activity, e.g. CAM-cycling metabolism, under drought conditions., G. Habibi, R. Hajiboland., and Obsahuje bibliografii
In this study, susceptibility of inbred C57BL/6 and outbred NMRI mice to monosodium glutamate (MSG) obesity or diet-induced obesity (DIO) was compared in terms of food intake, body weight, adiposity as well as leptin, insulin and glucose levels. MSG obesity is an early-onset obesity resulting from MSG-induced lesions in arcuate nucleus to neonatal mice. Both male and female C57BL/6 and NMRI mice with MSG obesity did not differ in body weight from their lean controls, but had dramatically increased fat to body weight ratio. All MSG obese mice developed severe hyperleptinemia, more remarkable in females, but only NMRI male mice showed massive hyperinsulinemia and an extremely high HOMA index that pointed to development of insulin resistance. Diet-induced obesity is a late-onset obesity; it developed during 16-week-long feeding with high-fat diet containing 60 % calories as fat. Inbred C57BL/6 mice, which are frequently used in DIO studies, both male and female, had significantly increased fat to body weight ratio and leptin and glucose levels compared with their appropriate lean controls, but only female C57BL/6 mice had also significantly elevated body weight and insulin level. NMRI mice were less prone to DIO than C57BL/6 ones and did not show significant changes in metabolic parameters after feeding with high-fat diet., R. Matyšková, L. Maletínská, J. Maixnerová, Z. Pirník, A. Kiss, B. Železná., and Obsahuje bibliografii a bibliografické odkazy
The pericarp of cereal crops is considered a photosynthetically active tissue. Although extensive studies have been performed on green leaves, the photosynthetic role of the pericarp in cereal caryopsis development has not been well investigated. In the present study, we investigated the anatomy, ultrastructure, chlorophyll (Chl) fluorescence, and oxygen evolution of the pericarp during caryopsis ontogenesis in field wheat (Triticum aestivum L.). The results showed that wheat pericarp cross-cells contained Chl; the grana stacks and thylakoid membranes in the cross-cells were more distinct in the pericarp than those in the flag leaves as shown by transmission electron microscopy. Chl fluorescence revealed that the photosynthetic efficiency, which was indicated by values of maximum efficiency of PSII photochemistry and effective PSII quantum yield, was lower in the pericarp compared to that of the flag leaf eight days after anthesis (DAA), whereas similar values were subsequently observed. The nonphotochemical quenching values were lower from 8-16 DAA but significantly increased in the pericarp from 24-32 DAA compared to the flag leaf. The oxygen evolution rate of the flag leaves was consistently higher than that of pericarp; notably, isolated pericarps released more oxygen than intact pericarps during caryopsis development. These results suggest that the pericarp plays a key role in caryopsis development by performing photosynthesis as well as by supplying oxygen to the endosperm and dissipating excessive energy during the
grain-filling stages., L. A. Kong , Y. Xie, M. Z. Sun, J. S. Si, L. Hu., and Obsahuje seznam literatury
The diurnal trends of gas exchange and chlorophyll fluorescence parameters in four Lycoris species (L. houdyshelii, L. aurea, L. radiata var. pumila and L. albiflora) were determined and compared with a portable photosynthesis analysis system. Our study revealed that L. houdyshelii had the lowest light compensation point (LCP), while the other three species had higher LCP (12.37-14.99 μmol m-2 s-1); L. aurea had the highest light saturation point (LSP) (1,189 μmol m-2 s-1), and L. houdyshelii and L. albiflora had lower LSP with the values being 322 and 345 μmol m-2 s-1, respectively, and L. radiata var. pumila showed the intermediate LSP. Both the species L. houdyshelii and L. albiflora exhibited a typical and obvious decline in net photosynthetic rate (PN) during midday, which was not observed in L. aurea. This indicated a possible photoinhibition in L. houdyshelii and L. albiflora as the ratio of variable to maximum fluorescence (Fv/Fm) values were higher in these two species. The minimal fluorescence (F0) values were lower in L. aurea and L. radiata var. pumila. The diurnal changes of transpiration rate (E) in all four species presented only one peak, appearing between 11:00 h or 13:00 h. By using simple correlation analyses, it was observed that the environmental factors affecting
PN were different among four species and the main factors were photosynthetic photon flux density (PPFD) and relative humidity especially for L. aurea and L. radiata. The results of studying indicated that the four species could be divided into two groups. The species L. radiata var. pumila and L. aurea were more adapted to a relatively high irradiance, and L. houdyshelii and L. albiflora could be grown in moderate-shade environment in order to scale up their growth and productivity., K. Liu ... [et al.]., and Obsahuje bibliografii