The aim of this paper is to examine whether current and/or Pleistocene geography affect the species richness and composition of Tuscan archipelago butterflies. This archipelago is located between Tuscany (Italy) and Corsica (France). Faunistic data was obtained from the literature and surveys. Our data revealed that contemporary geography is the most important factor determining the species richness and faunal composition of Tuscan archipelago butterflies. Indeed, current area and isolation of the islands are the only predictors significantly correlated with species richness. Paleogeographic features of the archipelago are not significantly correlated with species richness. Multidimensional scaling revealed patterns similar to those reported for other living groups. Specifically, Capraia and Montecristo group together with Corsica, while Elba, Giglio, Pianosa, Gorgona, Giannutri and the fossil island of Monte Argentario group with the Tuscan mainland. Recent geography seems to affect the faunal composition. Indeed Mantel test indicates that the similarity in the faunal composition of the Tuscan Archipelago islands is mainly related to present-day island characteristics and their relative distance from Tuscany and Corsica. Our results are similar to those recently obtained for Aegean archipelago butterflies.
We investigated the effect of the feeding behaviour of young larvae of Pieris rapae crucivora Boisduval (Pieridae) on parasitism by the parasitoid wasp, Cotesia glomerata (L.) (Braconidae). Young, 1st-3rd instar larvae used approximately three sites for feeding each day. When not feeding, they moved a short distance away from the feeding sites (= feeding marks) and rested. For first, second and third instar larvae, the distances from the new mark, made within 24 h, to larva at rest were, respectively, about 3.5 mm, 5 mm and more than 10 mm. To resume feeding, they moved back to one of the former feeding sites or a new site. The percentage of the feeding marks older than 24 h that attracted parasitoids was less than 50%. Time spent searching for hosts by a parasitoid was short. Larvae placed 5 mm or more from a feeding mark were less parasitized than the larvae placed near a mark. The number of feeding marks affected parasitism. When comparing single-marked and triple-marked leaves, the percentage parasitism of the larvae on the latter was significantly lower than that of the larvae on the former. On triple-marked leaves, parasitoids visited each mark unevenly. Accordingly, the time spent searching each mark differed significantly among the marks. Because of this confusing effect, hosts are considered to be reducing the risk of parasitism. Our results demonstrate that the feeding habits of young larvae of P. rapae crucivora are adaptive in terms of reducing the risk of parasitism by C. glomerata., Aya Nakayama, Keiji Nakamura, Jun Tagawa., and Obsahuje bibliografii
Climate change scenarios predict losses of cold-adapted species from insular locations, such as middle high mountains at temperate latitudes, where alpine habitats extend for a few hundred meters above the timberline. However, there are very few studies following the fates of such species in the currently warming climate. We compared transect monitoring data on an alpine butterfly, Erebia epiphron (Nymphalidae: Satyrinae) from summit elevations of two such alpine islands (above 1300 m) in the Jeseník Mts and Krkonoše Mts, Czech Republic. We asked if population density, relative total population abundance and phenology recorded in the late 1990s (past) differs that recorded early in 2010s (present) and if the patterns are consistent in the two areas, which are separated by 150 km. We found that butterfly numbers recorded per transect walk decreased between the past and the present, but relative population abundances remained unchanged. This contradictory observation is due to an extension in the adult flight period, which currently begins ca 10 days earlier and lasts for longer, resulting in the same total abundances with less prominent peaks in abundance. We interpret this development as desynchronization of annual cohort development, which might be caused by milder winters with less predictable snow cover and more variable timing of larval diapause termination. Although both the Jeseník and Krkonoše populations of E. epiphron are abundant enough to withstand such desynchronization, decreased synchronicity of annual cohort development may be detrimental for innumerable small populations of relic species in mountains across the globe., Martin Konvička, Jiří Beneš, Oldřich Čížek, Tomáš Kuras, Irena Klečková., and Obsahuje bibliografii
Animals, including human beings, tend to respond more strongly to stimuli that are associated with the highest relative rewards. This applies not only to food rewards but also to reproductive success. In the present review article this issue is discussed for insects in connection with intersexual communication and flower-visiting behaviour. Implications of the preference for supernormal visual releasing stimuli are examined from a sensory and evolutionary perspective, including a consideration of the choice of potential mates and recognition of the most rewarding flowers., Karl Kral., and Obsahuje bibliografii
The number of species of migratory Lepidoptera (moths and butterflies) reported each year at a site in the south of the UK has been rising steadily. This number is very strongly linked to rising temperatures in SW Europe. It is anticipated that further climate warming within Europe will increase the numbers of migratory Lepidoptera reaching the UK and the consequences of this invasion need urgent attention.
In this study, we report the development of a set of 15 polymorphic microsatellite markers for the box tree moth, Cydalima perspectalis (Walker), a highly invasive insect in Europe causing significant damage to natural and ornamental Buxus trees. The markers were characterized for four distant populations in both its native (China, two populations) and invasive ranges (Czech Republic and Turkey, one population each). The number of alleles ranged from 2 to 12. No marker significantly deviated from the Hardy-Weinberg equilibrium for all the populations sampled. These microsatellite markers are promising tools for further studies on the invasive pathways and dispersal pattern of the box tree moth in Europe., Audrey Bras, Laure Sauné, Alain Roques, Jérôme Rousselet, Marie-Anne Auger-Rozenberg., and Obsahuje bibliografii
Steroid hormone 20-hydroxyecdysone and the sesquiterpenoid juvenile hormone are the main regulators of insect development; however, it is unclear how they interact in the regulation of metamorphic events. Using the silkworm, Bombyx mori, we show that the juvenile hormone analogue fenoxycarb affects the cascade of ecdysone regulated genes that control the programmed cell death in the larval midgut. Morphological changes that occur during cell death were investigated by studying cross-sections of the midgut stained with hematoxylin and eosin. Apoptosis-specific DNA fragmentation was detected using TUNEL assay. Expression patterns of genes ATG8 and ATG12, which were used as indicators of autophagy, and genes of the ecdysone-regulated gene cascade were examined using real-time quantitative polymerase chain reaction. Fenoxycarb application on day 0 of the 5th larval instar extended the feeding period and postponed programmed cell death in mature larval midgut. This effect was probably due to a delay in ecdysone secretion and associated changes in gene expression were mostly not a direct response to the fenoxycarb. However, differences in the gene expression patterns in the control and fenoxycarb treated insects during the prepupal and early pupal stages indicated that fenoxycarb may also exert a more direct effect on some genes of the ecdysone regulated gene cascade., Ebru Goncu, Ramazan Uranli, Osman Parlak., and Obsahuje bibliografii
Setothosea asigna van Eecke is a dominant defoliator pest in oil palm plantations. To control this pest, a generalist predatory bug, Sycanus annulicornis Dohrn, was used as it is easy to rear on several different species of prey. In this study, we evaluated the influence of different prey on the biology and the ability of S. annulicornis to attack and kill the nettle caterpillar pest S. asigna. Based on laboratory rearing, the larvae of Crocidolomia pavonana F. (Lepidoptera: Crambidae) is a suitable prey for both the growth and development of S. annulicornis, as its nymphal development is shorter (74.0 ± 7.3 days) and adult longevity longer (81.0 ± 9.0 days for male and 64.8 ± 12.4 days for female, respectively) than when reared on the larvae of Tenebrio molitor L. (Coleoptera: Tenebrionidae) (44.0 ± 16.7 days for male and 52.6 ± 14.4 days for female). However, S. annulicornis reared on T. molitor larvae attacked 2.0-2.2 larvae of S. asigna per day, which is more than the 1.6-1.7 larvae per day of those reared on C. pavonana, which indicates that the larvae of T. molitor are a more effective diet for rearing S. annulicornis as biocontrol agent for the S. asigna., Abdul Sahid, Wahyu D. Natawigena, Hersanti, Sudarjat., and Obsahuje bibliografii
Alien phytophagous insects are often introduced along with their host plants, creating opportunities for troublesome invasions. Yet, not all of them are able to successfully colonize novel host plants. In this study, we investigated host selection by the alien leaf miner Phyllonorycter leucographella (Zeller, 1850) on both its original host and novel host plants in the insect's alien range. We predicted that this insect's percentage infestation of the original host would be positively related to its specific leaf area (SLA), because high-SLA leaves are nutritious and have thin cuticles, traits related to high offspring developmental success. We further hypothesized that this host selection process would apply in the selection of novel host plants. Our results show that this leaf miner selects leaves of its original host plant, Pyracantha coccinea, according to their SLA values. The SLA value was also positively related to the probability of P. leucographella infesting and successfully developing on novel host plants. The selection of high-SLA plants by the moth leads to a high developmental success on novel host plants in the first (summer) generation, but it is likely to be maladaptive in the second (overwintering) generation, because in temperate Europe, high SLA values are associated with deciduous plants that shed their leaves in autumn. It is likely that the apparent maladaptive selection of novel host plants by P. leucographella reduces the invasiveness of this pest by preventing its establishment on native plants., Urszula Walczak, Michał Bogdziewicz, Roma Żytkowiak, Piotr Karolewski, Edward Baraniak., and Obsahuje bibliografii
Insect cellular immune reaction, which generally includes phagocytosis, encapsulation and nodule formation, is achieved by hemocytes circulating in insect haemolymph. The shift of hemocytes from the normal phase to the adhering phase is an important process in the cellular immune reaction, which includes the attachment of hemocytes to foreign surfaces or other hemocytes via adhesion factors. Neuroglian is one of the adhering factors associated with encapsulation in Manduca sexta and Drosophila melanogaster. Here we studied the localization of neuroglian (MsNrg) in Mythimna separata and its functional role in the cellular immune reaction. The distribution of MsNrg mRNA between hemocyte populations was determined using real-time quantitative reverse transcription PCR and in situ hybridization, which revealed that MsNrg was highly expressed in adhering hemocytes, especially in plasmatocytes. Unexpectedly, the transcript was observed as well in non-adhering hemocytes, implying neuroglian has a function in non-adhering hemocytes. Moreover, we showed that the amount of MsNrg mRNA was not changed by injections of either biotic or abiotic non-selves. Fewer latex beads were fully encapsulated by hemocytes in larvae treated with MsNrg double-stranded RNA than in control larvae, but their ability to achieve phagocytosis and nodule formation remained unchanged by the MsNrg knockdown. These results indicate that the function of neuroglian in the cellular immune reaction is conserved in D. melanogaster and lepidopteran species, and neuroglian in non-adhering hemocytes could possess unidentified function., Kakeru Yokoi, Yoshiaki Kato, Masahiro Suzuki, Ken Miura., and Obsahuje bibliografii