a_1 In this study, we have determined power output reached at maximal oxygen uptake during incremental cycling exercise (PI,max) performed at low and at high pedaling rates in nineteen untrained men with various myosin heavy chain composition (MyHC) in the vastus lateralis muscle. On separate days, subjects performed two incremental exercise tests until exhaustion at 60 rev . min-1 and at 120 rev . min-1. In the studied group of subjects PI,max reached during cycling at 60 rev . min-1 was significantly higher (p=0.0001) than that at 120 rev . min-1 (287±29 vs. 215±42 W, respectively for 60 and 120 rev . min-1). For further comparisons, two groups of subjects (n=6, each) were selected according to MyHC composition in the vastus lateralis muscle: group H with higher MyHC II content (56.8±2.79 %) and group L with lower MyHC II content in this muscle (28.6±5.8 %). PI,max reached during cycling performed at 60 rev . min-1 in group H was significantly lower than in group L (p=0.03). However, during cycling at 120 rev . min-1, there was no significant difference in PI,max reached by both groups of subjects (p=0.38). Moreover, oxygen uptake (VO2), blood hydrogen ion [H+], plasma lactate [La-] and ammonia [NH3] concentrations determined at the four highest power outputs completed during the incremental cycling performed at 60 as well as 120 rev . min-1, in the group H were significantly higher than in group L. We have concluded that during an incremental exercise performed at low pedaling rates the subjects with lower content of MyHC II in the vastus lateralis muscle possess greater power generating capabilities than the subjects with higher content of MyHC II. Surprisingly, at high pedaling rate, power generating capabilities in the subjects with higher MyHC II content in the vastus lateralis muscle did not differ from those found in the subjects with lower content of MyHC II in this muscle., a_2 We have concluded that during an incremental exercise performed at low pedaling rates the subjects with lower content of MyHC II in the vastus lateralis muscle possess greater power generating capabilities than the subjects with higher content of MyHC II. Surprisingly, at high pedaling rate, power generating capabilities in the subjects with higher MyHC II content in the vastus lateralis muscle did not differ from those found in the subjects with lower content of MyHC II in this muscle, despite higher blood [H+], [La-] and [NH3] concentrations. This indicates that at high pedaling rates the subjects with higher percentage of MyHC II in the vastus lateralis muscle perform relatively better than the subjects with lower percentage of MyHC II in this muscle., J. Majerczak, Z. Szkutnik, K. Duda, M. Komorowska, I. Kolodziejski, J. Karasinski, J. A. Zoladz., and Obsahuje bibliografii a bibliografické odkazy
Alterations of calcium handling and other second messenger cascades including protein kinase C (PKC) and A (PKA) were suggested to be responsible for abnormal vascular function in spontaneously hypertensive rats (SHR). However, the relative contribution of these pathways to vasoconstriction is still not completely understood. We investigated the effect of Ro 31-8220 (PKC inhibitor) and H89 (PKA inhibitor) on vasoconstriction induced by 120 mM KCl or by addition of 10 μM noradrenaline (NA) in isolated femoral arteries of control Wistar rats and SHR. Moreover, we investigated these responses in the presence and absence of Ca2+ ions in the incubation medium in order to assess the role of calcium influx in these contractions. We observed that while the vasoconstriction in the presence of calcium was not different between Wistar and SHR, the difference between constriction elicited by NA addition in the absence and presence of external calcium was larger in SHR. The inhibition of PKC had no effect on constrictions in SHR, but diminished constrictions in Wistar rats. PKA inhibition slightly enhanced constrictions in Wistar rats, but reduced them in the presence of calcium in SHR. We conclude that vasoconstriction elicited by adrenergic stimulation is more dependent on extracellular calcium influx in SHR compared to Wistar rats. Moreover, the activation of PKA contributes to this calcium-dependent vasoconstriction in SHR but not in Wistar. On the other hand, PKC activation seems to play a less important role in vasoconstriction in SHR than in Wistar rats., M. S. Bal ... [et al.]., and Obsahuje seznam literatury
The physiological significance of serotonin released into the intestinal lumen for the regulation of motility is unknown in humans. The aim of this study was to evaluate the effect of serotonin infused into the lumen of the gastric antrum, duodenum or the jejunum, on antro-duodeno-jejunal contractility in healthy human volunteers. Manometric recordings were obtained and the effects of either a standard meal, continuous intravenous infusion of serotonin (20 nmol/kg/min) or intraluminal bolus infusions of graded doses of serotonin (2.5, 25 or 250 nmol) were compared. In addition, platelet-depleted plasma levels of serotonin, blood pressure, heart rate and electrocardiogram were evaluated. All subjects showed similar results. Intravenous serotonin increased migrating motor complex phase III frequency 3-fold and migrating velocity 2-fold. Intraluminal infusion of serotonin did not change contractile activity. Platelet-depleted-plasma levels of serotonin increased 2-fold following both intravenous and high doses of intraluminal infusions of serotonin. All subjects reported minor short-lived adverse effects following intravenous serotonin stimulation, while only half of the subjects reported minor short-lived adverse effects following intraluminal serotonin stimulations. We conclude that exogenous serotonin in the lumen of the upper part of the small intestine does not seem to change antro-duodeno-jejunal contractility significantly in healthy adult volunteers., M. B. Hansen, F. Arif, H. Gregersen, H. Bruusgaard, L. Wallin., and Obsahuje bibliografii a bibliografické odkazy
Many studies documented the relationship between elevated plasma concentrations of natriuretic peptides and cardiovascular diseases, especially heart failure. However, it is still uncertain whether physical exercise leads to a significant release of natriuretic peptide in healthy subjects. The aim of this study was to determine the effect of maximal physical activity on plasma BNP concentrations in healthy individuals within 3 hours after the short-term exercise. BNP plasma concentrations were measured in 15 healthy volunteers before, immediately after as well as 1 hour and 3 hours after bicycle spiroergometry. Maximal workload and exercise capacity were assessed in watts, wattseconds, metabolic equivalents and VO2max. Mean BNP plasma levels before, immediately after, 1 hour and 3 hours postexercise were 19.4±2.5; 30.6±4.7; 17.9±2.5 and 18.7±3.1 pg/ml, respectively. The increase of BNP concentrations immediately after exercise was statistically significant (p=0.0017) compared to baseline values. We did not find any correlation between the post-exercise increase of BNP levels and age, body mass index, maximal workload or exercise capacity. In conclusion, short-term maximal physical exercise in healthy individuals led to a fast and transient rise of plasma BNP concentrations, which remained well within normal range and far below the cut-off value for heart failure (100 pg/ml)., J. Krupička ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Activation of sublobule IX-b of the cerebellar vermis evokes hypotension, bradycardia and decrease of the phrenic nerve activity in the anesthetized animal. Cardiac performance during the isovolumic phases of systole and relaxation can be evaluated by dP/dt max, Vpm, dP/dt/DP40 and τ, respectively. In the present study, we evaluated the changes on cardiac function evoked by the stimulation of sublobule IX-b. New Zealand white rabbits were anesthetized, paralyzed and artificially ventilated. A posterior craniotomy was made to reveal and stimulate the cerebellar uvula (4 s train; 50 Hz; 1 ms; 20 μA). The femoral artery and veins were cannulated and a Swan-Ganz catheter was advanced in the upper abdominal aorta to control afterload when inflating the balloon. The left ventricle was catheterized with a Millar catheter. Blood pressure, heart rate, left ventricular pressure were monitored. Results showed a significant decrease on sublobule IX-b stimulation of all the indices of systolic function and an increase of τ indicating a decrease in the speed of the relaxation. These data provide the first evidence of the influence of sublobule IX-b on cardiac function. They may contribute to the understanding of the origin the cardiovascular changes that were observed in two patients with vermian and paravermian hemorrhage., I. Rochas, V. Gonçalves, M. J. Bettencourt, L. Silva-Carvalho., and Obsahuje bibliografii a bibliografické odkazy
We evaluated the effects of exercise on the vascular constrictor responses to α-adrenergic stimulation in the db/db mice. Twenty male db/db and their age-matched wild-type (WT) mice were exercised (1 hour/day, five days a week). Mice were anesthetized 7 weeks later, thoracic aortae were mounted in wire myograph and constrictor responses to phenylephrine (PE, 1 nM-10 μM) were obtained. Citrate synthase activity measured in the thigh adductor muscle was significantly increased in db/db mice that were exercise trained. Maximal force generated by PE was markedly greater in db/db aortae and exercise did not attenuate this augmented contractile response. Vessels were incubated with inhibitors of nitric oxide synthase (L-NAME, 200 μM), endothelin receptors (bosentan, 10 μM), protein kinase C (PKC) (calphostin C, 5 μM), cyclooxygenase (indomethacin, 10 μM) or Rho-kinase (Y-27632, 0.1 μM). Only calphostin-C normalized the augmented PE-induced constriction in db/db and db/db- exercised mice to that observed in WT (p<0.05). Cumulative additions of indolactam, a PKC activator, induced significantly greater constrictor responses in aortic rings of db/db mice compared to WT and exercise did not affect this response. Our data suggest that the augmented vasoconstriction observed in the aorta of db/db mice is likely due to increased PKC activity and that exercise do not ameliorate this increased PKC-mediated vasoconstriction., M. Khazaei, F. Moien-Afshari, T. J. Kieffer, I. Laher., and Obsahuje bibliografii a bibliiografické odkazy
Several diseases induce hypermetabolism, which is characterized by increases in rest ing energy expenditures (REE) and whole body protein loss. Exaggerated protein degradation is thought to be the driving force underlying this response. The effects of caspase and calpain inhibitors on REE in physiological and hypermetabolic conditions, how ever, are unknown. Thus, we studied whether MDL28170 (calpain inhibitor) or z-VAD-fmk (caspase inhibitor) affect REE under physiological conditions and during hypermetabolism post -burn. Rats were treated five times weekly and observed for 6 weeks. Treatmen t was started 2 h (early) or 48 h ( late) after burn. In normal rats, MDL28170 transiently increased REE to 130 % of normal during week 2-4. z-VAD-fmk reduced REE by 20-25 % throughout the observation period. Within 14 days after burns, REE increased to 13 0±5 % . Whereas MDL28170/ early treatment did not affect REE, MDL28170/ late transiently increased REE to 180±10 % of normal by week 4 post- burn. In contrast, with z -VAD -fmk/ early REE remained between 90-110 % of normal post- burn. z-VAD-fmk/ late did not affect burn-induced increases in REE. These data suggest that caspase cascades contribute to the development of hypermetabolism and that burn-induced hypermetabolism can be pharmacologically modulated. Our data point towards caspase cascades as po ssible therapeutic targets to attenuate hypermetabolism after burns, and possibly in other catabolic disease processes., P. G. Vana, H. M. LaPorte, R. H. Kennedy, R. L. Gamelli, M. Majetschak., and Obsahuje bibliografii
Atrial natriuretic peptide antifibrotic properties are mainly described in cardiac myocytes or in induced cardiac myofibroblasts (Angiotensin II or TGF-β induced differentiation). In the present work, we investigate the effects of ANP/NPRA/cGMP system in modulating rat cardiac fibroblasts function. Cardiac fibroblasts were isolated from adult Wistar male rats and cultured in the presence of serum in order to induce fibroblasts differentiation. Cultures were then treated with ANP (1 μM), 8-Br-cGMP (100 μM) or IBMX (100 μM), a non-specific phosphodiesterases inhibitor. ANP significantly decreased proliferation rate and collagen secretion. Its effect was mimicked by t he c GMP a nalog, w hile c ombining A NP w ith 8 -Br-cGMP did not lead to additional effects. Moreover intracellular cGMP levels were elevated when cells were incubated with ANP confirming that ANP intracellular pathway is mediated by cGMP. Additionally, immunoblotting and immunofluorescence were used to confirm the presence of guanylyl cyclase specific natriuretic peptide receptors A and B. Finally we scanned specific cGMP dependent PDEs via RT-qPCR, and noticed that inhibiting all PDEs led to an important decrease in proliferation rate. Effect of ANP became more prominent after 10 culture days, confirming the importance of ANP in fibroblasts to myofibroblasts differentiation. Uncovering cellular aspects of ANP/NPRA/cGMP signaling system provided more elements to help understand cardiac fibrotic process., M. Moubarak, C. Magaud, Y. Saliba, A. Chatelier, P. Bois, J.-F. Faivre, N. Farès., and Obsahuje bibliografii
Various types of mechanosensitive ion channels, including cationic stretch-activated channels (SAC NS ) and stretch-activated BKca (SAKca) channels, modulate heart rhythm. Bepridil has been used as an antiarrhythmic drug with multiple pharmacological effects; however, whether it is effective for mechanically induced arrhythmia has not been well investigated. To test the effects of Bepridil on SAKca channels activity, cultured chick embryo nic ventricular myocytes were used for single - channel recordings. Bepridil significantly reduced the open probability of the SAKca channel (PO). Next, to test the effects of bepridil on stretch-induced extrasystoles (SIE), we used an isolated 2-week-old Langendorff-perfused chick heart. The left ventricle (LV) volume was rapidly changed, and the probability of SIE was calculated in the presence and absence of bepridil, and the effect of the drug was compared with that of Gadolinium (Gd3+). Bepridil decreased the probability of SIE despite its suppressive effects on SAKca channel activity. The effects of Gd3+, which blocks both SAKca and SACNS , on the probability of SIE were the same as those of bepridil. Our results suggest that bepridil blocks not only SAKc a channels but possibly also blocks SACNS , and thus decreases the stretch -induced cation influx (stabilizing membrane potential) to compensate and override the effects of the decrease in outward SAKca current (destabilizing membrane potential)., H. Jin, G. Iribe, K. Naruse., and Obsahuje bibliografii
Beta-hydroxy-beta-methylbutyrate (HMB) is a leucine metabolite with protein anabolic effects. Since HMB is synthesized in the liver, unique effects of exogenous HMB intake may be hypothesized in subjects with liver disease, in which muscle wasting is frequently found. We studied effects of HMB on the liver and soleus (SOL) and extensor digitorum longus (EDL) muscles in partially-hepatectomized (PH) rats. HMB or saline was infused using osmotic pumps to PH or sham-operated rats for 7 days. We found lower body weight and protein content in EDL of PH rats treated with saline than in sham-operated animals. These effects were insignificant in HMB treated animals. In blood plasma of PH rats treated with HMB we found lower concentrations of creatinine and higher concentrations of urea and branched-chain amino acids (BCAA; valine, leucine, and isoleucine) than in PH animals treated with saline. HMB increased BCAA concentrations in SOL and EDL of PH animals and decreased proteolysis in EDL of both sham-operated and PH animals. In the livers of PH rats treated with HMB we found higher DNA content, DNA fragmentation, and BCAA concentrations than in saline-treated animals. The results indicate that HMB affects metabolism of BCAA and has positive influence on protein balance in muscles. Further studies are needed to clarify the effect of HMB on liver regeneration., M. Holeček, M. Vodeničarovová., and Obsahuje bibliografii