Mature specimens of the nematode Dichelyne (Cucullanellus) minutus (Rudolphi, 1819) (Ascaridida, Cucullanidae, Seuratoidea) were obtained from the intestine of flounder Platichthys flesus (L.) caught in the Øresund, Denmark. Plaice Pleuronectes platessa L. and common goby Pomatoschistus microps (Kröyer) also harbour this species. The eggs embryonate on the seabottom. Larvae about 440 µm long, and believed to be in their third stage, hatch from the eggs. These larvae are not directly infective to flounders or gobies. The polychaete Nereis diversicolor O.F. Müller acts as obligatory intermediate host. Experimental infections showed that larvae >600 µm long and provided with a chitinous tooth survived in flounder and common goby. The third-stage larvae moult to fourth-stage larvae in the fish gut wall. Mature worms occur in the lumen of the anterior part of the intestine. All developmental stages may be transferred from one flounder to another; thus the flounder may acquire the parasite also by devouring infected gobies.
Haemogregarina bigemina Laveran et Mesnil, 1901 was examined in marine fishes and the gnathiid isopod, Gnathia africana Barnard, 1914 in South Africa. Its development in fishes was similar to that described previously for this species. Gnathiids taken from fishes with H. bigemina, and prepared sequentially over 28 days post feeding (d.p.f.), contained stages of syzygy, immature and mature oocysts, sporozoites and merozoites of at least three types. Sporozoites, often five in number, formed from each oocyst from 9 d.p.f. First-generation merozoites appeared in small numbers at 11 d.p.f., arising from small, rounded meronts. Mature, second-generation merozoites appeared in large clusters within gut tissue at 18 d.p.f. They were presumed to arise from fan-shaped meronts, first observed at 11 d.p.f. Third-generation merozoites were the shortest, and resulted from binary fission of meronts, derived from second-generation merozoites. Gnathiids taken from sponges within rock pools contained only gamonts and immature oocysts. It is concluded that the development of H. bigemina in its arthropod host illustrates an affinity with Hemolivia and one species of Hepatozoon. However, the absence of sporokinetes and sporocysts also distances it from these genera, and from Karyolysus. Furthermore, H. bigemina produces fewer sporozoites than Cyrilia and Desseria, although, as in Desseria, Haemogregarina (sensu stricto) and Babesiosoma, post-sporogonic production of merozoites occurs in the invertebrate host. The presence of intraerythrocytic binary fission in its fish host means that H. bigemina is not a Desseria. Overall it most closely resembles Haemogregarina (sensu stricto) in its development, although the match is not exact.
We studied a natural infection of the oligochaete Branchiura sowerbyi Beddard, 1892 with the Raabeia-type actinosporean stage of Myxobolus lentisuturalis Dyková, Fiala et Nie, 2002 which infected goldfish Carassius auratus auratus (L.) in Italy, using molecular analysis of the SSU rRNA gene. The existence of intraoligochaete development shows that this parasite follows the life-cycle pattern described by Wolf and Markiw (1984) for Myxobolus cerebralis. Histological examinations of the goldfish infected by M. lentisuturalis showed at low magnification the presence of two bilateral crescent-shaped masses in the dorsal epaxial muscle. These lesions were not circumscribed, presented irregular edges and infiltrated the underlying bundles of skeletal muscle and interstitial tissue. At higher magnification, disappearance of muscle fibres and substitution of the muscle tissue with Myxobolus spores and plasmodia were observed.
Co-occurrence of species with similar trophic requirements, such as odonates, seems to depend both on them occupying different microhabitats and differing in their life-cycles. The life cycles of the dragonflies Boyeria irene and Onychogomphus uncatus were studied in two consecutive years, mainly by systematic sampling of larvae in seven permanent head courses that constitute the upper basin of the River Águeda, western Spain, in the central part of the ranges of these two species. The size ranges of the last five larval stadia of both species were established based on biometric data. The eggs of the egg-overwintering aeshnid hatched in late spring and early summer and for the gomphid hatching peaked in middle-late summer. Both species showed mixed voltinism with "cohort splitting". B. irene had a dominant three-year development (partivoltinism), with some developing in two years (semivoltinism). O. uncatus requires four, sometimes three years to complete development (all partivoltine). B. irene larvae spent the winter before emergence in the last three, maybe four stadia, as a "summer species". O. uncatus mainly behaved as a "spring species", most larvae spending the last winter in the final larval stadium.
Sequencing of SSU rDNA showed that actinospores of the tetractinomyxon type, which develop in Chone infundibuliformis Krøyer (Annelida, Polychaeta, Sabellidae) from the northern Øresund, Denmark, are identical with Ceratomyxa auerbachi Kabata, 1962 (Myxozoa, Ceratomyxidae). This myxosporean was found in the gallbladder of the Atlantic herring Clupea harengus L. from the northern Øresund, Denmark, and from the Bergen area, western Norway. The pansporocysts and actinospores of C. auerbachi are described. This is the third elucidated two-host life cycle of a marine myxozoan, and the first involving a marine ceratomyxid.
Two new species of the genus Camptylonemopsis (Cyanoprokaryota, Cyanobacteria), namely C. epibryos spec. nova and C. sennae spec. nova, are described from the coastal tropical rainy forest “Mata Atlantica” in Brazil (state Săo Paulo). The diacritical features and the taxonomic position of the genus, particularly the comparison with the related genera Coleodesmium, Tolypothrix and Scytonema are discussed. The tabular review of the genus Camptylonemopsis is presented.