L-malate, a tricarboxylic acid cycle (TCA ) intermediate, plays an important role in transporting NADH from cytosol to mitochondria for energy production and may be involved in the beneficial effects of improving physical stamina. In the present study, we investigated the effects of L-malate on the performance of forced swimming time and blood biochemical parameters related to fatigue – blood urea nitrogen (BUN), glucose (Glc), creatine kinase (CK) , total protein (TP) and lactic acid (LA). To investigate the effects of L-malate on the malate-aspartate shuttle and energy metabolism in mice, the activities of enzymes related to the malate-aspartate shuttle were measured. L-malate was orally administered to mice continuously for 30 days using a feeding atraumatic needle. The swimming time was increased by 26.1 % and 28.5 %, respectively, in the 0.210 g/kg and 0.630 g/kg L-malate-treated group compared with the control group. There were no differences in the concentrations of Glc, BUN and TP between the L-malate-treated groups and the control groups. However, the levels of CK were significantly decreased in the L-malate-treated groups. The results predict a potential benefit of L-malate for improving physical stamina and minimizing muscle damage during swimming exercise. The activities of cytosolic and mitochondrial malate dehydrogenase were significantly elevated in the L-malate-treated group compared with the control group. These enzymatic activities may be useful indicators for evaluating changes affecting the malate-aspartate shuttle and energy metabolism in the liver of mice., J. L. Wu, Q. P. Wu, J. M. Huang, R. Chen, M. Cai, J. B. Tan., and Obsahuje bibliografii a bibliografické odkazy
The aim of present study was to investigate functional and physical alterations in membranes of heart mitochondria that are associated with remodeling of these organelles in acute phase of streptozotocin-induced diabetes and to elucidate the role of these changes in adaptation of the heart to acute streptozotocin-induced diabetes (evaluated 8 days after single dose streptozotocin application to male Wistar rats). Action of free radicals on the respiratory chain of diabetic-heart mitochondria was manifested by 17 % increase (p<0.05) in oxidized form of the coenzyme Q10 and resulted in a decrease of states S3 and S4 respiration, the respiratory control index, rate of phosphorylation (all p<0.01) and the mitochondrial transmembrane potential (p<0.05), but the ADP/O ratio decreased only moderately (p>0.05). On the contrary, membrane fluidity and the total mitochondrial Mg2+-ATPase activity increased (both p<0.05). In diabetic heart mitochondria, linear regression analysis revealed a reciprocal relationship between the increase in membrane fluidity and decrease in trans-membrane potential (p<0.05, r = 0.67). Changes in membrane fluidity, transmembrane potential, Mg2+-ATPase activity and the almost preserved ADP/O ratio appear as the manifestation of endogenous protective mechanisms participating in the functional remodeling of mitochondria which contributes to adaptation of the heart to diabetes., M. Ferko, D. Habodászová, I. Waczulíková, J. Mujkošová, J. Kucharská, L. Šikurová, B. Ziegelhöffer, J. Styk, A. Ziegelhöffer., and Obsahuje bibliografii a bibliografické odkazy
The purpose of this study was to investigate the occurrence and time-course of apoptosis in soleus skeletal muscle during the first 48 hours of unloading. Fifty Charles River mice were randomly divided into five groups (n=10 each) according to the time of hindlimb suspension (HS). Mice we re suspended for 0 (Control), 6 (6HS), 12 (12HS), 24 (24HS), and 48 hours (48HS). Soleus muscle atrophy was confirmed by a significant decrease of 20 % in muscle-wet weight and of 5 % in the ratio protein concentration/muscle wet-weight observed after 48 hours of unloading. The apoptotic index, the AIF (apoptosis-inducing factor) and p53 expression presented th eir uppermost value (304 %, 241 % and 246 %, respectively) at 24HS, and were preceded by the highest activity of caspase-3 and -8 at 12HS (170 % and 218 %, respectively) and of Bax/Bcl-2 content at 6HS (160 %). There were no marked ultrastructural alterations until 24 hours of simulated weightlessness. Lysosomal autophagic activity and infiltration of phagocytic cells were observed at 24HS and 48HS and might have contributed to the degenerative changes noticed in both groups. Though not consistently supported by morphological evidences, the biochemical parameters sustain the concept that the occurrence of apoptosis parallels the soleus atrophic response in its early phase., R. Ferreira, M. J. Neuparth, R. Vittorino, H. J. Appell, F. Amado, J. A. Duarte., and Obsahuje bibliografii a bibliografické odkazy
Fatty liver disease associated with obesity is an important medical problem and the mechanisms for lipid accumulation in hepatocytes are not fully elucidated yet. Recent findings indicate that mitochondria play an importan t role in this process. Our data on hepatocytes in which mitochondria are in contact with other cytosolic structures importan t for their function, extend observations obtained on isolated mitochondria and confirm inhibition of Complex I activity in hepatocytes isolated from rats fed by high fat diet (HFD) compared with controls fed by standard diet (STD). Furthermore we have found that HFD- hepatocytes are more sensitive to the peroxidative stress because under these conditions also Complex II activity is disturbed. Therefore in HFD animals decrease of Complex I activity cannot be compensated by Complex II substrates as in STD hepatocytes. Our data thus indicates that combination of HFD and peroxidative stress potentiates HFD damaging effect of mitochondria because both branches of the respiratory chain (NADH- and flavoprotein-dependent) are disturbed., T. Garnol ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Mitochondria as an energy generating cell device are very sensitive to oxidative damage. Our previous findings obtained in hepatocytes demonstrated that Complex I of the respiratory chain is more sensitive to oxidative damage than other respiratory chain complexes. We present additional data on isolated mitochondria showing that palmityl carnitine oxidation is strongly depressed at a low (200 μM) tert-butyl hydroperoxide (tBHP) concentration, while oxidation of the flavoprotein-dependent substrate - succinate is not affected and neither is ATP synthesis inhibited by tBHP. In the presence of tBHP, the respiratory control index for palmityl carnitine oxidation is strongly depressed, but when succinate is oxidized the respiratory control index remains unaffected. Our findings thus indicate that flavoprotein-dependent substrates could be an important nutritional factor for the regeneration process in the necrotic liver damaged by oxidative stress., Z. Červinková, H. Rauchová, P. Křiváková, Z. Drahota., and Obsahuje bibliografii a bibliografické odkazy
Dysfunction of mitochondria induced by ischemia is considered to be a key event triggering neuronal cell death after brain ischemia. Here we report the effect of ischemia-reperfusion on mitochondrial protein synthesis and activity of cytochrome c oxidase (EC 1.9.3.1, COX). By performing 4-vessel occlusion model of global brain ischemia, we have observed that 15 min of global ischemia led to the inhibition of COX subunit I (COXI) synthesis to 56 % of control. After 1, 3 and 24 h of reperfusion, COXI synthesis was inhibited to 46, 50 and 72 % of control, respectively. Depressed synthesis of COXI was not a result of either diminished transcription of COXI gene or increased proteolytic degradation of COXI, since both Northern hybridization and Western blotting did not show significant changes in COXI mRNA and protein level. Thus, ischemia-reperfusion affects directly mitochondrial translation machinery. In addition, ischemia in duration of 15 min and consequent 1, 3 and 24 h of reperfusion led to the inhibition of COX activity to 90.3, 80.3, 81.9 and 83.5 % of control, respectively. Based on our data, we suggest that inhibition of COX activity is rather caused by ischemia-induced modification of COX polypeptides than by inhibition of mitochondrial translation., P. Racay ... [et al.]., and Obsahuje seznam literatury
The intracellular levels of antioxidant and free radical scavenging enzymes are gradually altered during the aging process. An age-dependent increase of oxidative stress occurring throughout the lifetime is hypothesized to be the major cause of aging. The current study examined the effects of L-malate on oxidative stress and antioxidative defenses in the liver and heart of aged rats. Sprague-Dawley male rats were randomly divided into four groups, each group consisting of 6 animals. Group Ia and Group IIa were young and aged control rats. Group Ib and Group IIb were young and aged rats treated with L-malate (210 mg/kg body weight per day). L-malate was orally administrated via intragastric canula for 30 days, then the rats were sacrificed and the liver and heart were removed to determine the oxidant production, lipid peroxidation and antioxidative defenses of young and aged rats. Dietary L-malate reduced the accumulation of reactive oxygen species (ROS) and significantly decreased the level of lipid peroxidation in the liver and heart of the aged rats. Accordingly, L-malate was found to enhance the antioxidative defense system with an increased activity of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) and increased glutathione (GSH) levels in the liver of aged rats, a phenomenon not observed in the heart of aged rats. Our data indicate that oxidative stress was reversed and the antioxidative defense system was strengthened by dietary supplementation with L-malate., J.-L. Wu, Q.-P. Wu, X.-F. Yang, M.-K. Wei, J.-M. Zhang, Q. Huang, X.-Y. Zhou., and Obsahuje bibliografii a bibliografické odkazy
The European Molecular Biology Organization organized a meeting in Prague October 1-3. At this symposium several topics were discussed: biology and genetics of mitochondria in relation to cancer; the role of mitochondria-targeting compounds in cancer suppression (including BH3 mimetics); mitochondria as transmitters of death receptor-induced apoptosis; regulation of apoptosis and the interplay of mitochondria with other organelles p53 and mitochondria in apoptosis regulation; and the role of mitochondria in targeting cancer stem cells. and Jiří Neužil, Ladislav Anděra a Alois Kozubík.
Acute streptozotocin diabetes mellitus (DM) as well as remote ischemic preconditioning (RPC) has shown a favorable effect on the postischemic-reperfusion function of the myocardium. Cardioprotective mechanisms offered by these experimental models involve the mitochondria with the changes in functional properties of membrane as the end-effector. The aim was to find out whether separate effects of RPC and DM would stimulate the mechanisms of cardioprotection to a maximal level or whether RPC and DM conditions would cooperate in stimulation of cardioprotection. Experiments were performed on male Wistar rats divided into groups: control, DM, RPC and DM treated by RPC (RPC+DM). RPC protocol of 3 cycles of 5-min hind limb ischemia followed by 5-min reperfusion was used. Ischemicreperfusion injury was induced by 30-min ischemia followed by 40-min reperfusion of the hearts in Langendorff mode. Mitochondria were isolated by differential centrifugation, infarct size assessed by staining with 1 % 2,3,5-triphenyltetrazolium chloride, mitochondrial membrane fluidity with a fluorescent probe DPH, CoQ9 and CoQ10 with HPLC. Results revealed that RPC as well as DM decreased the infarct size and preserved mitochondrial function by increasing the mitochondrial membrane fluidity. Both used models separately offered a sufficient protection against ischemic-reperfusion injury without an additive effect of their combination., M. Ferko, I. Kancirová, M. Jašová, I. Waczulíková, S. Čarnická, J. Kucharská, O. Uličná, O. Vančová, M. Muráriková, T. Ravingerová, A. Ziegelhöffer., and Obsahuje bibliografii
The concentration-dependence of tert-butyl hydroperoxide (BHP) inhibitory effect on oxygen consumption in isolated rat liver mitochondria was measured in the presence of various respiratory substrates. Strong inhibitory effect at low concentrations of BHP (15-30 μM) was found for oxoglutarate and palmitoyl carnitine oxidation. Pyruvate and glutamate oxidation was inhibited at higher concentrations of BHP (100-200 μM). Succinate oxidation was not affected even at 3.3 mM BHP. Determination of mitochondrial membrane potential has shown that in the presence of NADH-dependent substrates the membrane potential was dissipated by BHP but was completely restored after addition of succinate. Our data thus indicate that beside peroxidative damage of complex I also various mitochondrial NADH-dependent dehydrogenases are inhibited, but to a different extent and with different kinetics. Our data also show that succinate could be an important nutritional substrate protecting hepatocytes during peroxidative damage., R. Endlicher ... [et al.]., and Obsahuje seznam literatury