The aim of the present study was to investigate the mechanism of vasorelaxant responses induced by red wine polyphenolic compounds (Provinol). Rings of rat femoral artery with or without functional endothelium were set up in a myograph for isometric recording and precontracted with phenylephrine (10-5 M). Provinol in cumulative doses (10-9 to 10-3 mg/ml) elicited endothelium- and dose-dependent relaxation of the artery with maximal relaxation of 56 % at the concentration of 10-5 mg/ml. The relaxant responses to Provinol correlated well with the increase of NO synthase activity in the vascular tissue after administration of cumulative doses of Provinol (10-9 to 10-3 mg/ml). NG-nitro-L-arginine methylester (L-NAME, 3x10-4 M) significantly attenuated the endothelium-dependent relaxation produced by Provinol. Administration of L-arginine (3x10-5 M) restored the relaxation inhibited by L-NAME. The relaxant responses of Provinol were abolished in the presence of Ca2+-entry blocker, verapamil (10-6 M). Administration of hydrogen peroxide (H2O2) abolished acetylcholine (10-5 M)-induced relaxation of the rat femoral artery, while administration of Provinol (10-5 mg/ml) together with H2O2 helped to maintain the acetylcholine-induced relaxation. Provinol only partially affected the concentration-response curve for the NO donor sodium nitroprusside-induced relaxation in rings without endothelium. In conclusion, Provinol elicited endothelium-dependent relaxation of rat femoral artery by the Ca2+-induced increase of NO synthase activity and by protecting NO from degradation., W. Zenebe, O. Pecháňová, R. Andriantsitohaina., and Obsahuje bibliografii
The present study was focused on regulatory role of nitric oxide on functional properties of the cardiac Na, K-ATPase in three various animal models of hypertension: spontaneously hypertensive male rats (SHR) with increased activity of nitric oxide synthase (NOS) by 60 % (Sh1), SHR with decreased activity of NOS by 40 % (Sh2) and rats with hypertension induced by L-NAME (40 mg/kg/day) with depressed activity of NOS by 72 % (LN). Studying the utilization of energy substrate we observed higher Na, K-ATPase activity in the whole concentration range of ATP in Sh1 and decreased activity in Sh2 and LN. Evaluation of kinetic parameters revealed an increase of Vmax value by 37 % in Sh1 and decrease by 30 % in Sh2 and 17 % in LN. The KM value remained unchanged in Sh2 and LN, but was lower by 38 % in Sh1 indicating increased affinity of the ATP binding site, as compared to controls. During the activation with Na+ we observed increased Vmax by 64 % and increased KNa by 106 % in Sh1. In Sh2 we found decreased Vmax by 40 % and increased KNa by 38 %. In LN, the enzyme showed unchanged Vmax with increased KNa by 50 %. The above data indicate a positive role of increased activity of NOS in improved utilization of ATP as well as enhanced binding of Na+ by the cardiac Na, K-ATPase., J. Vlkovičová, V. Javorková, L. Mézešová, O. Pecháňová, N. Vrbjar., and Obsahuje bibliografii a bibliografické odkazy
Coronary and carotid artery structure was studied in rats in order to analyze the processes in the cardiovascular system in NO-deficient hypertension model. Long-term inhibition of NO synthase was induced by L-nitro arginine methyl ester (L-NAME, 50 mg/kg/day p.o.) for a period of 8 weeks. An increase in blood pressure and heart/body weight ratio confirmed the reliability of the model. The wall thickness as well as the calculated wall area of the coronary artery increased by 70 % and 50 %, respectively, in comparison to control vessels. The wall thickness and the calculated wall area of the carotid artery increased by 73 % and 70 %, respectively. Further analysis indicated that both the tunica intima and tunica media in the coronary and the carotid artery increased quantitatively in a similar manner. Remarkable differences were found in the contribution of cellular and noncellular components in the tunica media of the coronary and carotid arteries of experimental animals. The calculated extracellular area increased by 116 % in comparison to the control coronary artery and by 97 % in comparison to the control carotid artery. The increase in extracellular matrix of the tunica media of coronary and carotid arteries seems to be basic cause of the remodelling of the vessels studied.
Renin-angiotensin system (RAS) plays a key role in the regulation of renal function, volume of extracellular fluid and blood pressure. The activation of RAS also induces oxidative stress, particularly superoxide anion (O2-) formation. Although the involvement of O2- production in the pathology of many diseases is known for long, recent studies also strongly suggest its physiological regulatory function of many organs including the kidney. However, a marked accumulation of O2- in the kidney alters normal regulation of renal function and thus may contribute to the development of salt-sensitivity and hypertension. In the kidney, O2- acts as vasoconstrictor and enhances tubular sodium reabsoption. Nitric oxide (NO), another important radical that exhibits opposite effects than O2-, is also involved in the regulation of kidney function. O2- rapidly interacts with NO and thus, when O2- production increases, it diminishes the bioavailability of NO leading to the impairment of organ function. As the activation of RAS, particularly the enhanced production of angiotensin II, can induce both O2- and NO generation, it has been suggested that physiological interactions of RAS, NO and O2- provide a coordinated regulation of kidney function. The imbalance of these interactions is critically linked to the pathophysiology of salt-sensitivity and hypertension., L. Kopkan, L. Červenka., and Obsahuje seznam literatury
The responsiveness of isolated high-pressure (aorta, renal artery) and low-pressure vessels (pulmonary artery) was compared during systemic hypertension induced by chronic inhibition of nitric oxide synthesis by NG-nitro-L-arginine methyl ester (L-NAME) in rats. L-NAME (40 mg/kg/day) was given to animals in their drinking water. After 4 weeks of L-NAME treatment, systolic blood pressure increased by 37 % as compared with that in the control group. Chronic L-NAME treatment resulted in significant reduction of endothelium-dependent relaxation to acetylcholine (10-8 to 3xl0-6 mol/1) in both types of vessels. The reduced relaxation was not influenced by acute pretreatment with indomethacin (10"5 mol/1), however, it was further reduced by acute pretreatment with additional L-NAME (10-4 mol/1). L-arginine (10-4 mol/1) improved the reduced relaxation. Endothelium- independent relaxation to sodium nitroprusside (10-9 to 10-6 mol/1) was unaffected by L-NAME treatment. /3-adrenoceptor-mediated relaxation to isoprénaline (10“8 to 3xl0-6 mol/1) was also not influenced by chronic L-NAME treatment Similar alterations in the responsiveness of high- and low- pressure vessels indicate rather the decisive role of nitric oxide restriction than that of elevated blood pressure in their development
The role of afferent sensory neurones in gastric mucosal protection is discussed. The principal effects of substance P and capsaicin on gastric motility and mucosal blood flow are taken in correlation with gastric mucosal injury. It seems likely that the protective effect of sensory neuropeptides is dependent on gastric mucosal blood flow and is mediated through the nitric oxide-generating system and partly the prostaglandins. The interaction between these two systems and the primordial effect of one of them on gastric mucosal blood flow and mucosal integrity after neuropeptide release is still not clear.
The pathogenesis of arterial hypertension in autosomal dominant polycystic kidney disease (ADPKD) is complex and likely dependent on interaction of hemodynamic, endocrine and neurogenic factors. We decided to evaluate the role of endothelin (ET1) and nitric oxide (NO) in the regulation of arterial blood pressure (BP) and to determine plasma levels of ET1 and NO in the group of patients with ADPKD. The ADPKD group (18 patients, 6 men + 12 women, mean age 44.611.7 years, with creatinine clearancecorrig > 1.1 ml/s) was compared with a control group of 27 healthy volunteers of comparable age. Plasma levels of ET1 assessed by direct RIA determination in the group of ADPKD patients (11.03±1.8 fmol/ml) were significantly increased (p<0.001) in comparison with the control group (2.660.58 fmol/ml), while no significant differences were observed between normotensive and hypertensive patients in the ADPKD group. Serum levels of NO were evaluated according to the determination of serum levels of their metabolites - nitrites/nitrates. Serum levels of NO in the group of ADPKD patients (39.85±6.38 μmol/l) were significantly higher (p<0.05) in comparison with the control group (22.7±1.20 μmol/l), whereas in the ADPKD group no significant differences were observed between normotensive and hypertensive patients. Thus, our study supports the concept of complex alteration of both vasoconstrictor and vasodilator systems in the pathogenesis of arterial hypertension in ADPKD., M. Merta, J. Reiterová, R. Ryšavá, V. Tesař, M. Jáchymová., and Obsahuje bibliografii
A short review on the role of endothelium and nitric oxide (NO) in experimental hypertension is presented in the light of the literature and our own recent findings. Based on these data, it is concluded that even though there is a lot of evidence in favor of the primary and causal association of endothelial dysfunction and NO in experimental hypertension, it seems still more plausible that they are causative in some types of hypertension only. Our own experience rather speaks for a secondary but still an important participation of endothelium in the maintenance and further elevation of high blood pressure. Endothelium plays a key role in the development of organ damages in hypertension., H. Vapaatalo, E. Mervaala, M.-L. Nurminen., and Obsahuje bibliografii
Ghrelin, an endogenous ligand for growth hormone secretagogue receptor (GHS-R), has been id entified in the rat and human gastrointestinal tract. Ghrelin has been proposed to play a role in gastric acid secretion. Nitric oxide (NO) was shown as a mediator in the mechanism of ghrelin action on gastric acid secretory function. However, there is a little knowledge about this topic. We have investigated the role of ghrelin in gastric acid secretion and the role of NO as a mediator. Wistar albino rats were used in this study. The pyloric sphincter was ligated through a small midline incision. By the time, saline (0.5 ml, iv) was injected to the control group, ghrelin (20 μg/kg, iv) was injected to the first experimental group, ghrelin (20 μg/kg, iv) +L-NAME (70 mg/kg, sc) was injected to the second group and L-NAME (70 mg/kg, sc) was administered to the third group. The rats were killed 3 h after pylorus ligation; gastric acid secretion, mucus content and plasma nitrite levels were measured. Exogenous ghrelin administration increased gastric acid output, mucus content and total plasma nitrite levels, while these effects of ghrelin were inhibited by applying L-NAME. We can conclude that ghrelin participates in the regulation of gastric acid secretion through NO as a mediator., H. M. Bilgin, C. Tumer, H. Diken, M. Kelle, A. Sermet., and Obsahuje bibliografii a bibliografické odkazy
The aim of this study was to evaluate the role of endogenous histamine in the regulation of reactive hyperaemia (RH) and coronary autoregulation in isolated rat hearts. The basal release of cardiac histamine (perfusion pressure 60 cm H2O) amounted to 100-200 pmol/min/g wL During the first 15 s following 30 s of coronary occlusion, the release of histamine increased about three times and returned to basal levels after approximately 90 s, paralleling the changes of coronary flow (CF). Blockade of Hi-receptors increased basal CF by 23±2 %, significantly reduced blood flow debt and prolonged the duration of RH. Blockade of H2- and H3-receptors produced a significant decline of CF, decreased RH flow and diminished RH by 40±3 %. Blockade of all three classes of histamine receptors indicated that endogenous histamine exerts predominantly vasodilatory effects (mediated by H2- and H3-receptors) on coronary circulation. Histamine-induced vasodilation appears to be NO-dependenL Changes of coronary perfusion pressure from 20 to 120 cm H2O were accompanied by an almost linear decrease of histamine release from about 200 to 40-50 pmol/min/g wL Blockade of histamine receptors decreased, while L-NAME significantly widened the autoregulatory range of the isolated rat heart, reduced CF and release of NO, but reversed the pattern of histamine release leaving the autoregulatory range unaltered, which indicate that endogenous histamine does not play a role in the regulation of coronary autoregulation.