The whipworms, i.e. parasitic nematodes of the genus Trichuris Roederer, 1761, infect a variety of mammals. Apparently low diversity of primate-infecting species of Trichuris strongly contrasts with the high number of species described in other mammalian hosts. The present study addresses the diversity of whipworms in captive and free-ranging primates and humans by analysing nuclear (18S rRNA, ITS2) and mitochondrial (cox1) DNA. Phylogenetic analyses revealed that primate whipworms form two independent lineages: (i) the Trichuris trichiura (Linnaeus, 1771) clade comprised of genetically almost identical whipworms from human and other primates, which suggests the ability of T. trichiura to infect a broader range of primates; (ii) a clade containing primarily Trichuris suis Schrank, 1788, where isolates from human and various primates formed a sister group to isolates from pigs; the former isolates thus may represent of more species of Trichuris in primates including humans. The analysis of cox1 has shown the polyphyly of the genera Trichuris and Capillaria, Zeder, 1800. High sequence similarity of the T. trichiura isolates from humans and other primates suggests their zoonotic potential, although the extent of transmission between human and other non-human primates remains questionable and requires further study., Jana Doležalová, Miroslav Oborník, Eva Hajdušková, Milan Jirků, Klára J. Petrželková, Petra Bolechová, Cristina Cutillas, Rocio Callejón, Jozef Jaroš, Zuzana Beránková, David Modrý., and Obsahuje bibliografii
This study reports for the first time the banding pattern on chromosomes of the Tatra vole, Microtus tatricus, as revealed by G-, C-, and Ag-NOR staining procedures. The banded karyotype of M. tatricus was compared with Microtus (Terricola) subterraneus, M. (Stenocranius) gregalis, and M. (Blanfordimys) aghanus. The karyotype of M. tatricus possesses highly derived features, e.g., the low diploid number of chromosomes or unique combinations of arms in the biarmed autosomes. It is almost impossible to find clear relationships of M. tatricus with other extant vole species from the point of view of comparative karyology. The karyotypic changes in voles are apparently not accompanied by adequate divergence in morphological and genetic traits.
During a survey the occurrence of Kudoa quraishii Mansour, Harrath, Abd-Elkader, Alwasel, Abdel-Baki et Al Omar, 2014, recently identified in the muscles of the Indian mackerel, Rastrelliger kanagurta (Cuvier), a species of Kudoa Meglitsch, 1947 infecting oocytes of mature females of the same host fish was found. The new species, for which the name Kudoa saudiensis sp. n. is proposed, infects oocytes that are enlarged with a whitish colour. The parasite develops in vesicular polysporous plasmodia within the oocyte. Infection occurs with a mean prevalence of 20% (7/35) of examined females. Mature spores are quadratic in shape in apical view, having four equal valves and four symmetrical polar capsules. Fresh spores are 2.4-3.6 µm long (mean ± SD 3.1 ± 0.3 µm), 4.3-5.4 µm (4.7 ± 0.3 µm) wide and 3.4-4.3 µm (3.8 ± 0.3 µm) in thickness and long. The smaller size of the new Kudoa species was the distinctive feature that separates it from all previously described species. Molecular analysis based on the SSU rDNA sequences shows that the highest percentage of similarity of 98.5% was observed with K. ovivora Swearer et Robertson, 1999, reported from oocytes of labroid fish from the Caribbean coasts of Panama. The percentage of similarity was 98% with K. azevedoi Mansour, Thabet, Chourabi, Harrath, Gtari, Al Omar et Ben Hassine, 2013 and 89% with K. quraishii. Phylogenetic analysis of the SSU and LSU rDNA data revealed a consistent of the new species with K. azevedoi and K. ovivora. Our findings support the creation of Kudoa saudiensis sp. n. that infects oocytes of the Indian mackerel Rastrelliger kanagurta., Lamjed Mansour, Abdel Halim Harrath, Abdel-Azeem S. Abdel-Baki, Saleh Alwasel, Saleh Al-Quraishy, Suliman Y. Al Omar., and Obsahuje bibliografii
A provisional larval groundplan of the family Hygrobiidae is provided through descriptions of internal and external features of three of six extant species, Hygrobia hermanni (Fabricius, 1775), H. wattsi Hendrich 2001 and H. australasiae (Clark, 1862) and phylogenetic interpretations. Hygrobiidae larvae are morphologically differing dramatically from all other known Adephaga by 20 autapomorphies. Structures involved with feeding, i.e., mouthparts, prepharynx and foregut are highly modified as a result of a specialisation on small tubificid worms and chironomid larvae. A placement of Hygrobiidae within Dytiscoidea is well supported by the reduced condition of the terminal abdominal segments, and the presence of 10 ancestral setae on femur and a clade comprising Hygrobiidae, Amphizoidae, and Dytiscidae by the presence of thin and elongate caudal tentorial arms, a very strong musculus verticopharyngalis and a longitudinally divided adductor tendon of the mandible. A highly modified foregut, reduced terminal spiracles VIII and the presence of tubular gills are features which distinguish hygrobiid larvae from those of other groups of Dytiscoidea (i.e, Amphizoidae, Noteridae, Dytiscidae). A sister-group relationship between Hygrobiidae and Dytiscidae is indicated by a distinctly shortened and transverse prepharynx and a cerebrum and suboesophaeal ganglion shifted to the anterior third of the head. Larvae of the Australian species H. wattsi and H. australasiae share the presence of a bluntly rounded mandible and an apical position of the primary pore MNd in instar I as potential synapomorphies.
The New World genus Lepidosina Marshall & Buck gen. n. is described including nine new and two previously described species: L. angusticercus Marshall & Buck sp. n. (Caribbean, Central and South America), L. argentinensis Marshall & Buck sp. n. (Argentina), L. cubensis Marshall & Buck sp. n. (Cuba), L. evanescens Marshall & Buck sp. n. (Central and South America), L. gibba (Spuler) comb. n. (Florida, Caribbean), L. inaequalis (Malloch) comb. n. (southern U.S.A., Central America, Venezuela), L. multispinulosa Marshall & Buck sp. n. (Ecuador, Peru), L. platessa Marshall & Buck sp. n. (Bolivia), L. proxineura Marshall & Buck sp. n. (Brazil), L. quadrisquamosa Marshall & Buck sp. n. (Venezuela), and L. rutricauda Marshall & Buck sp. n. (Colombia to Peru). Keys to males and females are provided, and the species level phylogeny is analyzed based on a matrix of 24 morphological characters. The sister group of this well-defined, highly apomorphic genus remains unknown. Most species are restricted to lowland habitats. Larvae and puparia of Lepidosina remain unknown.
Marssoniella elegans Lemmermann, 1900, a parasite of ovarial tissues of the copepod Cyclops vicinus Uljanin, 1875, was studied as a representative of aquatic-clade microsporidia which form ''heteroinfectious spores'' (spores not infective to the original host as opposed to ''homoinfectious spores'' which are infective for the original host) and which thus should require an alternate host. Several structural characters of this microsporidian are similar to those of copepod morphs of microsporidia infecting mosquitoes. However, small subunit ribosomal DNA phylogeny indicates that caddis flies (Insecta, Trichoptera) might be the alternate hosts of Marssoniella. Ultrastructural data obtained are used to redefine the genus Marssoniella Lemmermann, 1900 and its type species Marssoniella elegans.
Tibetan macaques (Macaca thibetana) are a threatened primate species endemic to China. The current taxonomy of the species is based on external morphological and anatomical variations. To further understand the intraspecific variation and relationships among populations, we analyzed 44 mitochondrial DNA control region sequences (475 bp fragment) from individuals across the species range. Results revealed 11 major haplotypes with a high nucleotide diversity (0.792), but nucleotide diversity within haplotype lineages was only 0.042. Neighbor-joining phylogenetic analyses indicated support for four distinct haplotype clades corresponding to regional groups consistent with the recognized subspecies M .t. thibetana, M. t. guizhonensis, M. t. huangshanensis and M. t. pullus. As a result of regional geographic variation and genetic differences, we recommend the four subspecies should be considered different management units for conservation efforts.
Rhipicephalus camicasi Morel, Mouchet et Rodhain, 1976 is thought to be distributed across Africa, Arabian Peninsula and the Mediterranean region. It belongs to the Rhipicephalus sanguineus (Latreille, 1806) species complex. Mitochondrial genome sequences are becoming frequently used for the identification and differentiation of tick species. In the present study, the entire mitochondrial genome of R. cf. camicasi (~15 kb) collected from a camel in Saudi Arabia was sequenced and compared with mitogenomes of two species of Rhipicephalus Koch, 1844. The mitochondrial genome is 87.8% and 91.7% identical to the reference genome of R. sanguineus (sensu stricto, former "temperate lineage") and Rhipicephalus linnaei (Audouin, 1826) (former "tropical lineage"). The current study delivers a molecular reference for material that resembles R. camicasi. We propose to consider the current material, including the complete mitogenome, as the reference for R. camicasi, until a revision using topotypical material is available.
Microsporidia are intracellular parasites of insects and other higher eukaryotes. The microsporidian Nosema philosamiae Talukdar, 1961 was isolated from the eri silkworm, Philosamia cynthia ricini Grote. In the present study, alpha- and beta-tubulin genes from N. philosamiae were characterized. The identity analysis of nucleotide and amino acid sequences indicated high similarity with species of Nosema Nägeli, 1857 sensu lato (nucleotide sequences, ≥ 96.0%; amino acid sequences, ≥ 99.0%). However, the tubulin genes of N. philosamiae share low sequence similarity with that of N. ceranae Fries, Feng, da Silva, Slemenda et Pieniazek, 1996 (strain BRL01) and a Nosema/Vairimorpha species. Phylogenies based on alpha-, beta- and combined alpha- plus beta-tubulin gene sequences showed that N. philosamiae, along with the true Nosema species, forms a separate clade with a high bootstrap value, with N. ceranae BRL01 forming a clade of its own. The results indicated that the alpha- and beta-tubulin sequences may be useful as a diagnostic tool to discriminate the true Nosema group from the Nosema/Vairimorpha group.
Phylogenetic relations among five species of Hipposideridae and seven species of Rhinolophidae including one endemic species (Rhinolophus rex) were examined by partially sequencing of the mitochondrial cytochrome b gene (528 bp). Analyses of the cytochrome b sequences of Hipposideridae and Rhinolophidae suggest that each formed a monophyletic group. All phylogenetic analyses indicate that Aselliscus should remain as a genus within Hipposideridae, with the mean percentage sequence differences (16.43%) and transition: transversion ratios (2.032) between Aselliscus and Hipposideros. Within Hipposideros, H. armiger shows close affinity to H. larvatus although it possesses superficial similarity morphological characters to H. pratti. Genetic distance values suggest that H. larvatus and H. armiger diverged from each other approximately 1.7–4.3 million years ago, and H. pratti diverged from the larvatus-armiger clade approximately 2.1–5.2 million years ago.