Leaf senescence can be induced by numerous factors. In order to explore the relationship between root respiration and leaf senescence, we utilized different types of phloem girdling to control the root respiration of Alhagi sparsifolia and its physiological response. Our results showed that both girdling and inhibition of root respiration led to a decline of stomatal conductance, photosynthesis, transpiration rate, chlorophyll (Chl) a, Chl b, carotenoid (Car) content, Chl a/b, Chl/Car, water potential, and Chl a fluorescence, as well as to an increase of abscisic acid (ABA), proline, and malondialdehyde content in leaves and to upregulation of senescence-associated gene expression. Our present work implied that both inhibition of root respiration and girdling can induce leaf senescence. In comparison with phloem girdling, the leaf senescence caused by inhibition of root respiration was less significant. The reason for girdling-induced senescence was ABA and carbohydrate accumulation. Senescence induced by inhibition of root respiration occurred due to leaf water stress resulting from inhibition of water absorption., G.-L. Tang, X.-Y. Li, L.-S. Lin, Y. Hu, F.-J. Zeng., and Obsahuje seznam literatury
Inner structure of isolated intact chloroplasts was observed for the first time by a method of laser scanning microscopy at the temperature of liquid nitrogen at 77 K. The microscope, based on gradient index optics, has a maximum resolution of 440 nm at the wavelength of 650 nm. Chloroplasts were excited into the Q-band of chlorophyll b by a krypton laser line at 647.6 nm and fluorescence was detected using two different interference filters. The 680 nm interference filter detects the regions where photosystem (PS) 2 mainly occurs, the 730 nm interference filter detects domains with predominant location of PS1. Since PS1 occurs mainly in stroma lamellae, whereas PS2 occurs mainly in grana regions we were able to view the structure of thylakoid membrane in isolated intact chloroplast that is the closest to in vivo state. and F. Vácha ... [et al.].
The efficiency in selective extraction of photosystem (PS) 2 oxygen evolving complexes was compared among seven detergents. These were applied to thylakoid membranes of the thermophilic cyanobacterium Synechococcus elongatus. Used were five non-ionic detergents with one ionic and one zwitterionic for comparison. To compare the suitability and efficiency of the detergents the following properties of the extracts were examined: maximum rate of oxygen evolution with various electron acceptors, the relative variable fluorescence (FV/FM), the contamination of the extract with photosystem (PS) 1, and the status of the electron acceptor side of PS2 reaction centre. None of the detergents yielded a highly selective extraction of the PS2 complexes (negligible contamination with PS1) which would simultaneously display a high photochemical activity and high structural intactness. Heptylthioglucoside and dodecylmaltoside yielded the nearest approximation to the optimum result. Kinetic fluorometry was applied here for the first time to characterize the functional and structural properties of PS2 particles from cyanobacteria. and E. Šetlíková ... [et al.].
Cations such as Mg2+ regulate spillover of absorbed excitation energy mainly in favour of photosystem (PS) 2. Effect of low concentration (<10 mM) of the monovalent cation Na+ on chlorophyll (Chl) a fluorescence was completely overridden by divalent cation Mg2+ (5 mM). Based on Chl a fluorescence yield and 77 K emission measurements, we revealed the role and effectiveness of anions (Cl-, SO42-, PO43-) in lowering the Mg2+-induced PS2 fluorescence. The higher the valency of the anion, the lesser was the expression of Mg2+ effect. Anions may thus overcome Mg2+ effects up to certain extent in a valency dependent manner, thereby diverting more energy to PS1 even in the presence of MgCl2. They may do so by reversing Mg2+-induced changes. and Anjana Jajoo, Sudhakar Bharti.
Effects of benzyladenine (BA) and abscisic acid (ABA) applied separately or simultaneously on parameters of gas exchange of Phaseolus vulgaris L. leaves were studied. In the first two experimental sets) 100 μM ABA and 10 μM BA were applied to plants sufficiently supplied with water. Spraying of leaves with ABA decreased stomatal conductance (gs) and in consequence transpiration rate (E) and net photosynthetic rate (PN) already 1 h after application, but 24 h after application the effect almost disappeared. 10 μM BA slightly decreased gas exchange parameters, but in simultaneous application with ABA reversed the effect of ABA. Immersion of roots into the same solutions markedly decreased gas exchange parameters and 24 h after ABA application the stomata were completely closed. The effect of ABA was ameliorated by simultaneous BA application, particularly after 1-h treatment. In the third experimental set, plants were pre-treated by immersing roots into water, 1 μM BA, or 100 μM ABA for 24 h and then the halves of split root system were dipped into different combinations of 1 μM BA, 100 μM ABA, and water. In plants pre-treated with ABA all gas exchange parameters were small and they did not differ in plants treated with H2O+H2O, H2O+BA, or BA+BA. In plants pre-treated with BA or H2O, markedly lower values of PN were found when both halves of roots were immersed in ABA. Further, the effects of pre-treatment of plants with water, 1 μM BA, 100 μM ABA, or ABA+BA on the development of water stress induced by cessation of watering and on the recovery after rehydration were followed. ABA markedly decreased gas exchange parameters at the beginning of the experiment, but in its later phase the effect was compensated by delay in development of water stress. BA also delayed development of water stress and increased PN in water-stressed leaves. BA reversed the effect of ABA at mild water stress. Positive effects of BA and ABA pre-treatments were observed also after rehydration.
Two types of photosystem 2-light-harvesting complex 2 (PS2-LHC2) supercomplexes with similar pigment and protein composition were isolated directly from thylakoid membranes by sucrose density gradient centrifugation. Electron microscopy and single particle image analysis revealed the first Type as single unpaired PS2-LHC2 supercomplexes, whereas the second Type was characterized as pairs of two PS2-LHC2 supercomplexes attached together by their stromal sides. Unstacking of thylakoid membranes resulted in a spontaneous disintegration of the paired supercomplexes into single unpaired particles. A model of the organisation of the pigment-protein complexes in grana region is proposed. and L. Bumba, M. Hušák, F. Vácha.
Environmental stresses, such as cold, heat, salinity, and drought, induce ethylene production and oxidative stress and cause damage in plants. On the other hand, studies have shown that salicylic acid (SA) induced resistance to environmental stresses in plants. In this research, the effects of ethylene on chlorophyll (Chl), carotenoid (Car), anthocyanin, flavonoids, ascorbic acid, dehydroascorbic acid, total ascorbate, lipid peroxidation, and ethylene production in leaves of canola pretreated with SA were studied. The plants were grown in pots until they have four leaves. Leaves were sprayed for two days with three different concentrations of SA (0, 0.5, and 1 mM). The plants were treated for three days with three concentrations of ethylene (0, 50, and 100 ppm). At the end of the ethylene treatments, all examined parameters were measured. The results showed that the ethylene treatments induced lipid peroxidation, while SA mitigated this effect. The ethylene treatment lowered significantly Chl and Car contents and anthocyanin accumulation, but SA alleviated these effects. SA induced an increase in ascorbic acid content in canola plants after the ethylene treatments. Therefore, we concluded that SA played an important role in the alleviation of damages caused by stress conditions. and M. M. Tirani, F. Nasibi, Kh. M. Kalantari.
Watermelon (Citrillus lanatus) plants were grown for two consecutive years in open-top chambers with three different ozone concentrations (O3-free air, O3 ambient, and air with additional O3; CFA, NFA, and NFA+O3) and three nitrogen fertilizer concentrations [0, 14.0, and 29.6 g N per pot; N0, N1, and N2). There was an interaction between ozone and N fertilizer for the major parameters studied. O3 and N2 treatments led to a significant decrease in maximum efficiency of photosystem 2 (PS2) photochemistry (Fv/Fm), and induced a significant decrease in the actual quantum yield of PS2 (ΦPS2), due mainly to the increased closure of PS2 reaction centres (qP) and to an increase in the non-photochemical quenching (NPQ). On the other hand, these plants exhibited an increased susceptibility to photoinhibition, which could be associated with an increased fraction of reduced QA. An increase in lipid peroxidation indicated that damage was occurring at the membrane levels. High N concentration enhanced the detrimental effects of ozone on the fluorescence parameter induction and lipid peroxidation. All these negative alterations led to a decreased yield. and A. Calatayud, F. Pomares, E. Barreno.
The review summarizes results concerning photosynthetic systems with chlorophylls and carotenoids obtained by means of spectral methods such as polarized radiation, photoacoustic spectroscopy, delayed luminescence, thermal deactivation, and leading to construction of model systems. and D. Frąckowiak, B. Smyk.