The recessive lethal character Luteus-Pa, expressed as a yellowing of leaves of young seedlings and followed by death approximately 60 d after emergence, presents a 3:1 segregation in crosses and/or selfpollinated plants. We evaluated quantitatively the fluorescence emission of chlorophyll (Chl), gas exchange, and chemical composition of normal and recessive homozygous cacao seedlings of the cross Pa 121×Pa 169. The characteristics of Chl fluorescence kinetics were studied in stages B2, B3, C, D, and E of leaf development, corresponding to plant ages of 9 to 12, 13 to 15, 16 to 20, 21 to 30, and >30 d, respectively. Gas exchanges were measured in mature leaves of both seedlings. In regular intervals of 3 d beginning at 33 d after emergence, the seedlings were separated into roots, stems, leaves, and cotyledons to determine the contents of saccharides (SAC) and free amino acids (FAA) and variation of the leaf Chl content. The Chl distribution in complexes of the photosynthetic apparatus was analysed by SDS-PAGE in mature leaves of both normal and recessive 32-d-old seedlings. There were variations in Chl fluorescence, gas exchanges and chemical composition of different parts of both types of seedlings. However, no significant differences were found in the Chl distribution through photosynthetic complexes of 32-d-old normal and recessive homozygous seedlings. After that period a decrease in the Chl concentration was observed in the recessive seedlings, and only minimum fluorescence (F0) was found. The F0 values were higher in the recessive seedlings than in the normal ones. The net photosynthetic rate of mature leaves was negative in agreement with low conductance, transpiration rate, and high internal CO2 concentration. These factors might have contributed to a depletion in SAC in different plant parts. Although F0 partially reflects the Chl concentration in leaf tissue, the increase in its value was probably due to a damage in reaction centres of photosystem 2. Therefore, the growth and development of recessive homozygous seedlings depended exclusively on cotyledon reserves, the depletion of which leads to death. and A.-A. F. de Almeida, R. R. Valle, P. Serrano Minar.
Available water stored in deep soil layers could increase the photosynthetic capacity of cotton. It was hypothesized that the photosynthesis of cotton would be enhanced by changing the fertilizer application depth under different deep-layer water conditions. We examined two deep-layer water levels, i.e.,
well-watered (W80) and not watered (W0), combined with surface application (F10) and deep application (F30) of basal fertilizer. Compared to W0, W80 resulted in increased leaf area (LA), photosynthetic pigment contents, maximal PSII efficiency (Fv/Fm), effective quantum yield of PSII (YII) and PSI (YI), electron transport rate of PSII (ETRII) and PSI (ETRI). W80 also increased the aboveground and root dry mass by 39 and 0.6%, respectively, and decreased the root/shoot ratio by 40-73%. Under the W0 condition, higher values of Fv/Fm, YII, YI, ETRII, and ETRI were measured for F10 compared to F30 after 69 d from emergence. Under the W80 condition, cotton plants with F10 showed higher LA, Fv/Fm, YII, YI, ETRII, and ETRI, but there were no significant differences in the photosynthetic pigments compared to F30. Our results suggest that sufficient water in deeper soil layers and the surface application of basal fertilizer could increase photosynthetic activity and efficiency, which promoted aboveground dry mass accumulation and partitioning towards reproductive organs., Z. K. Chen, Y. P. Niu, H. Ma, A. Hafeez, H. H. Luo, W. F. Zhang., and Obsahuje seznam literatury
In two hybrids of sorghum (Sorghum bicolor Moench.), C51 and C42, high nitrogen concentration (HN) increased net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) of well watered (HW) plants. Water stressing (LW plants) resulted in low PN, gs, and E in both hybrids, but the values were still higher in HN plants as compared to low nitrogen-grown (LN) plants. Intercellular CO2 concentration (Ci) increased in droughted plants. This increase was much higher in LN plants as compared to HN plants. Instantaneous water use efficiency was lower in LN plants as a consequence of a greater effect of water stress on photosynthesis. Leaf water potential was reduced by water stress in all treatments. Analysis of chlorophyll a fluorescence at room temperature showed that photosystem 2 (PS2) was rather tolerant to the water stress imposed. Water stress caused a slight decrease in the efficiency of excitation capture by open PS2 reaction centres (Fv/Fm). The in vivo quantum yield of PS2 photochemistry (ΦPS2) and the photochemical quenching coefficient (qP) were slightly reduced, while the nonphotochemical quenching coefficient (qN) was increased under the water stress. However, in hybrid C42 these characters were little or not affected by the water stress.
The rainy season affects the development of maize in Liaoning Province in China. Continuous, rainy weather and scant sunlight result in poor pollination, bald tips, and in an abnormally high, barren stalk. Field studies were conducted at the kernel formation stage (3-11 d after silking). Paired, near-isogenic lines of nonbarren stalk (Shennong 98B) and barren stalk (Shennong 98A) were exposed to 38, 60, and 75% shading to investigate changes in photosynthesis and chlorophyll (Chl) fluorescence characteristics under different light intensities. Net photosynthetic rate (PN), leaf maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching of Chl fluorescence (qP), and actual photochemical efficiency of PSII (ΦPSII) of Shennong 98B were always higher than those of Shennong 98A under natural light, contrary to nonphotochemical quenching (NPQ). Fv/Fm, ΦPSII, and qP increased, while PN and electron transport rate (ETR) decreased after shading, and this was aggravated with increasing shade intensity. PN, qP, ΦPSII, and ETR were lower than the values in natural light condition after seven days of shading. NPQ, Fv/Fm, ΦPSII, qP, and ETR recovered, when shading was removed. The PN of two inbred lines returned soon to the control levels after 38% shade. Under shade and natural light conditions, the PN and Chl fluorescence characteristics of Shennong 98A were both lower than those of Shennong 98B. We suggest that a poor adaptability to low light is an important physiological reason for inducing barren stalk in low light-sensitive maize., X. M. Zhong, Z.S. Shi, F.H. Li, H.J. Huang., and Obsahuje bibliografii
In the present study, photosynthetic traits and chlorophyll (Chl) fluorescence parameters of Populus sibirica grown under different irrigation regimes were investigated to estimate seedling growth and vitality for reforestation of a desertification area. According to our results, photosynthesis and Chl fluorescence were significantly affected by water deficit only under severe drought conditions., T. Y. Lee, S. Y. Woo, M. J. Kwak, K. Inkyin, K. E. Lee, J. H. Jang, I. R. Kim., and Obsahuje seznam literatury
Increase in both atmospheric CO2 concentration [CO2] and associated warming are likely to alter Earths' carbon balance and photosynthetic carbon fixation of dominant plant species in a given biome. An experiment was conducted in sunlit, controlled environment chambers to determine effects of atmospheric [CO2] and temperature on net photosynthetic rate (P N) and fluorescence (F) in response to internal CO2 concentration (C i) and photosynthetically active radiation (PAR) of the C4 species, big bluestem (Andropogon gerardii Vitman). Ten treatments were comprised of two [CO2] of 360 (ambient, AC) and 720 (elevated, EC) µmol mol-1 and five day/night temperature of 20/12, 25/17, 30/22, 35/27 and 40/32 °C. Treatments were imposed from 15 d after sowing (DAS) through 130 DAS. Both F-P N/Ci and F-P N/PAR response curves were measured on top most fully expanded leaves between 55 and 75 DAS. Plants grown in EC exhibited significantly higher CO2-saturated net photosynthesis (Psat), phosphoenolpyruvate carboxylase (PEPC) efficiency, and electron transport rate (ETR). At a given [CO2], increase in temperature increased P sat, PEPC efficiency, and ETR. Plants grown at EC did not differ for dark respiration rate (RD), but had significantly higher maximum photosynthesis (P max) than plants grown in AC. Increase in temperature increased Pmax, RD, and ETR, irrespective of the [CO2]. The ability of PEPC, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosystem components, derived from response curves to tolerate higher temperatures (>35 °C), particularly under EC, indicates the ability of C4 species to sustain photosynthetic capacity in future climates. and V. G. Kakani, G. K. Surabhi, K. R. Reddy.
To uncover adaptation capacities of two flooding-tolerant plant species, Pterocarya stenoptera (a native species) and Pinus elliottii (an exotic species from southeastern USA), to alternating submergence and drought, we investigated their physiological and growth responses to water stress. Water treatments, including control, continuous flooding (CF), and periodic flooding and drought (PF), were applied to seedlings in order to simulate water level fluctuation in the hydrofluctuation zone of the Three Gorges Reservoir Region. Results showed that net photosynthetic rate (P N), stomatal conductance, and intrinsic water-use efficiency of both plant species were negatively affected under CF and PF compared with the corresponding controls. The P N of both species under PF was comparable to that under CF. At the end of the experiment, the ratio of intercellular to ambient CO2 concentration was not statistically different between water treatments, while that of P. elliottii was significantly higher than that of P. stenoptera. Although P. stenoptera formed lenticels under flooding conditions, P. elliottii seedlings allocated more mass to leaves and increased the relative growth rate of height to enhance the photosynthetic efficiency. Our results illustrated that P. stenoptera and P. elliottii seedlings developed different adaptive strategies in response to flooding, both CF and PF. Therefore, both P. stenoptera and P. elliottii are promising candidates for the vegetation reconstruction of the riparian zones in the Three Gorges Reservoir Region., Y. Yang, C. Li., and Obsahuje seznam literatury
A study on photosynthetic and yield effects of waterlogging of winter wheat at four stages of growth was conducted in specially designed experimental tanks during the 2007-2008 and 2008-2009 seasons. Compared with the control, waterlogging treatments at tillering and jointing-booting stages reduced photosynthetic rate (PN) and transpiration (E) significantly, it also decreased average leaf water-use efficiency (WUE, defined as the ratio of PN to E) by 3.3% and 3.4% in both years. All parameters returned quickly to the control level after soil was drained. Damage to the photosynthetic apparatus during waterlogging resulted in a lower Fv/Fm ratio, especially at the first two stages. A strong reduction in root length, root mass, root/shoot ratio, total dry mass, and leaf area index were observed. The responses from vegetative plants at tillering and jointing-booting stages were greater than in generative plants at onset of flowering and at milky stages. The number of panicles per hectare at tillering stage and the spikelet per panicle at the stages of jointing-booting and at onset of flowering were also significantly reduced by waterlogging, giving 8.2-11.3% decrease of the grain yield relative to the control in both years. No significant difference in yield components and a grain yield was observed between the control and treatments applied at milky stages. These responses, modulated by the environmental conditions prevailing during and after waterlogging, included negative effects on the growth, photosynthetic apparatus, and the grain yield in winter wheat, but the effect was strongly stage-dependent. and G. C. Shao ... [et al.].
Calamagrostis arundinacea L. (Roth.) and C. villosa (Chaix.) J.F. Gmel are two grass species substituting forest communities on deforested areas in Central Europe. They were exposed to enhanced ultraviolet-B (UV-B, λ = 290-320 nm) radiation during 22 weeks. A system of modulated lamps operating under field conditions was used to simulate a 25 % increase of incident UV-B radiation. CO2 assimilation seemed to be limited by a decrease of stomatal conductance (gs) in C. arundinacea, whereas carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) was not affected. On the contrary, gs and RuBPCO activity decreased in C. villosa. These physiological adjustments resulted in growth changes; above-ground biomass decreased in C. villosa (prevailing negative effect) and significantly increased in C. arundinacea (prevailing positive effect) in response to enhanced UV-B radiation. and O. Urban ... [et al.].
Photosynthesis and growth characteristics of Parthenocissus quinquefolia were measured under differing soil water availability within a pot. Decreased soil moisture significantly reduced the leaf relative water content (RWC) and the above- and below-ground biomass. However, more biomass was allocated to the root than to the leaf. Net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) were also significantly decreased but water use efficiency (WUE) was increased. Midday depressions in PN and gs were not evident for the well-irrigated plants. With the lower water availability, midday reductions in PN and gs were much more marked and the duration of the depression was longer. Additionally, the PN-irradiance response curves also indicated that water supply affected photosynthesis capacity. The growth and photosynthetic response of P. quinquefolia to water supply indicated that this species could resilient to water availabilities and adapt to Hunshandak conditions very well. and Z. J. Zhang ... [et al.].