In order to evaluate effect of weedy rice on the photosynthesis and grain filling of cultivated rice, cultivated rice ‘Nanjing 44‘ was planted in the field under different densities of weedy rice ‘JS-Y1‘ for two years. The results showed that net photosynthetic rate (PN), net assimilation rate, grain filling rate, and the grain yield of cultivated rice all decreased with increasing weedy rice density. Furthermore, yield component analysis revealed that increasing weedy rice density had the most significant effect on the percentage of filled grains and the number of rice panicles. The correlation analyses indicated that the yield of cultivated rice was highly correlated with the net photosynthetic rate and the net assimilation rate. Our results illustrated that high density of weedy rice might cause yield losses in cultivated rice by inhibition of photosynthesis and grain filling., X. M. Xu, G. Li, Y. Su, X. L. Wang., and Obsahuje bibliografii
The aim of this study was to assess the influence of regular daily consumption of white wine on oxidative stress and cardiovascular risk markers. Forty-two healthy male volunteers consumed 375 ml of white wine daily. Each participant provided three venous blood samples (before wine consumption, following the wine consumption period and again a month later). Levels of superoxide dismutase, glutathione peroxidase, reduced glutathione, total antioxidant capacity, total cholesterol, HDL-cholesterol, apolipoprotein A I, apolipoprotein B, triglycerides, paraoxonase 1, C-reactive protein, homocysteine, thiobarbituric acid reactive substances (TBARS) and advanced oxidation protein products (AOPP) were measured. Immediately following the month of white wine consumption there was a significant increase in HDL-cholesterol (p<0.0001), paraoxonase 1 (p<0.001), glutathione peroxidase (p<0.001) and reduced glutathione (p<0.01) levels, a decrease in superoxide dismutase activities (p<0.0001), and a decrease in oxidation protein products (p<0.001) and TBARS (p<0.05) concentrations. However, there was also a clear increase in homocysteine (p<0.0001) after a month of white wine consumption. The results of our non-placebo controlled trial suggest that regular daily white wine consumption is associated not only with both antioxidative and antiatherogenic effects but also with a potentially proatherogenic increase of homocysteine concentrations. and D. Rajdl, J. Racek, L. Trefil, K. Siala.
Time delay in the mediation of ventilation (VE) by arterial CO2 pressure (PaCO2) was studied during recovery from short impulse-like exercises with different work loads of recovery. Subjects performed two tests including 10-s impulse like exercise with work load of 200 watts and 15-min recovery with 25 watts in test one and 50 watts in test two. V . E, end tidal CO2 pressure (PETCO2) and heart rate (HR) were measured continuously during rest, warming up, exercise and recovery. PaCO2 was estimated from PETCO2 and tidal volume (VT). Results showed that predicted arterial CO2 pressure (PaCO2 pre) increased during recovery in both tests. In both tests, VE increased and peaked at the end of exercise. VE decreased in the first few seconds of recovery but started to increase again. The highest correlation coefficient between PaCO2 pre and V . E was obtained in the time delay of 7 s (r=0.854) in test one and in time delays of 6 s (r=0.451) and 31 s (r=0.567) in test two. HR was significantly higher in test two than in test one. These results indicate that PaCO2 pre drives VE with a time delay and that higher work intensity induces a shorter time delay., R. Afroundeh, T. Arimitsu, R. Yamanaka, C. S. Lian, K. Shirakawa, T. Yunoki, T. Yano., and Obsahuje bibliografii
We evaluated the effects of exercise on the vascular constrictor responses to α-adrenergic stimulation in the db/db mice. Twenty male db/db and their age-matched wild-type (WT) mice were exercised (1 hour/day, five days a week). Mice were anesthetized 7 weeks later, thoracic aortae were mounted in wire myograph and constrictor responses to phenylephrine (PE, 1 nM-10 μM) were obtained. Citrate synthase activity measured in the thigh adductor muscle was significantly increased in db/db mice that were exercise trained. Maximal force generated by PE was markedly greater in db/db aortae and exercise did not attenuate this augmented contractile response. Vessels were incubated with inhibitors of nitric oxide synthase (L-NAME, 200 μM), endothelin receptors (bosentan, 10 μM), protein kinase C (PKC) (calphostin C, 5 μM), cyclooxygenase (indomethacin, 10 μM) or Rho-kinase (Y-27632, 0.1 μM). Only calphostin-C normalized the augmented PE-induced constriction in db/db and db/db- exercised mice to that observed in WT (p<0.05). Cumulative additions of indolactam, a PKC activator, induced significantly greater constrictor responses in aortic rings of db/db mice compared to WT and exercise did not affect this response. Our data suggest that the augmented vasoconstriction observed in the aorta of db/db mice is likely due to increased PKC activity and that exercise do not ameliorate this increased PKC-mediated vasoconstriction., M. Khazaei, F. Moien-Afshari, T. J. Kieffer, I. Laher., and Obsahuje bibliografii a bibliiografické odkazy
The physiological response of plants to triple foliar biofertilization with cyanobacteria and green algae under the conditions of limited use of chemical fertilizers was investigated. Triple foliar biofertilization with intact cells of Microcystis aeruginosa MKR 0105, Anabaena sp. PCC 7120, and Chlorella sp. significantly enhanced physiological performance and growth of plants fertilized with a synthetic fertilizer YaraMila Complex (1.0, 0.5, and 0.0 g per plant). This biofertilization increased the stability of cytomembranes, chlorophyll content, intensity of net photosynthesis, transpiration, stomatal conductance, and decreased intercellular CO2 concentration. Applied monocultures augmented the quantity of N, P, K in plants, the activity of enzymes, such as dehydrogenases, RNase, acid or alkaline phosphatase and nitrate reductase. They also improved the growth of willow plants. This study revealed that the applied nontoxic cyanobacteria and green algae monocultures have a very useful potential to increase production of willow, and needed doses of chemical fertilizers can be reduced., M. Grzesik, Z. Romanowska-Duda, H. M. Kalaji., and Obsahuje bibliografii
Effects of root treatment with 5-aminolevulinic acid (ALA) on leaf photosynthesis in strawberry (Fragaria ananassa Duch.) plants were investigated by rapid chlorophyll fluorescence and modulated 820 nm reflection using 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and methyl viologen (MV). Our results showed that ALA treatments increased the net photosynthetic rate and decreased the intercelluar CO2 concentration in strawberry leaves. Under DCMU treatment, trapping energy for QA reduction per PSII reaction center increased greatly, indicating DCMU inhibited electron transfer from QA−. The maximum photochemical efficiency of PSII (Fv/Fm) decreased under the DCMU treatment, while a higher Fv/Fm remained in the ALA-pretreated plants. Not only the parameters related to a photochemical phase, but also that one related to a heat phase remained lower after the ALA pretreatment, compared to the sole DCMU treatment. The MV treatment decreased PSI photochemical capacity. The results of modulated 820 nm reflection analysis showed that DCMU and MV treatments had low
re-reduction of P700 and plastocyanin (PSI). However, the strawberry leaf discs pretreated with ALA exhibited high re-reduction of PSI under DCMU and MV treatments. The results of this study suggest that the improvement of photosynthesis by ALA in strawberry was not only related to PSII, but also to PSI and electron transfer chain., Y. P. Sun, J. Liu, R. X. Cao, Y. J. Huang, A. M. Hall, C. B. Guo, L. J. Wang., and Obsahuje bibliografii
The effects of serosally added 5-hydroxytryptamine (5-HT, 100 μM) on the short circuit-current (Isc) across jejunum and ileum taken from fed, starved and undernourished (Gerbillus cheesmani) were investigated. The effects of the neurotoxin, tetrodotoxin (TTX, 10 μM) on the basal Isc as well as on the maximum increase in Isc induced by 5-HT were also studied. There were regional variations in the basal Isc as well as in the way by which the small intestine responds to 5-HT. The basal Isc was greater in jejunum than in ileum and such differences were TTX-sensitive. The maximum increase in Isc, which results from addition of 5-HT, was higher in jejunum than in ileum under all three feeding conditions. TTX reduced the maximum increase in Isc induced by 5-HT across stripped and intact intestine of the two regions in the three nutritional states. The 5-HT-induced Isc in the jejunum of both starved and undernourished gerbils and in the ileum of starved animals was the function of both submucosal and myenteric plexus. In jejunum and ileum taken from starved and undernourished gerbils the 5-HT-induced Isc was both chloride- and bicarbonate-dependent. Thus the results indicated that both starvation and undernourishment increase that response and such increases were TTX-sensitive and both chloride- and bicarbonate-dependent., F. Y. Al-Balool., and Obsahuje bibliografii a bibliografické odkazy
With the aim to contribute to the elucidation of the role of phytohormones in response of plants to adverse environmental conditions, seedlings of Phaseolus vulgaris, Nicotiana tabacum, Beta vulgaris, and Zea mays were supplied with water, 100 µM abscisic acid (ABA), or 10 µM N6-benzyladenine (BA) immediately before imposition of water stress (WS). In all four species, contents of chlorophylls (Chls) and carotenoids were markedly decreased during WS and after rehydration only in plants pre-treated with water but not in those pre-treated with ABA or BA. Contents of pigments of xanthophyll cycle increased during WS more in plants pre-treated with ABA or BA than in those pre-treated with water, but the degree of their de-epoxidation was highest in the later. Similarly, the efficiency of photosystem 2, determined as variable to maximal Chl fluorescence ratio, was not markedly decreased in bean plants pre-treated with ABA or BA in contrast to those pre-treated with water. The imposed WS was not severe enough to damage chloroplast ultrastructure. However, different changes in a size of starch inclusions were observed. In bean plants, the amount of starch increased considerably in plants pre-treated with water, while it decreased in BA pre-treated plants and no change was found in ABA pre-treated ones. The starch content declined under WS in sugar beet and tobacco plants but only moderate changes were found in ABA or BA pre-treated plants. Thus the application of BA and especially of ABA reduced the negative effects of subsequent WS. and D. Haisel ... [et al.].
We compared the effects of adaptation to intermittent high altitude (IHA) hypoxia of various degree and duration on ischemia-induced ventricular arrhythmias in rats. The animals were exposed to either relatively moderate hypoxia of 5000 m (4 or 8 h/day, 2-3 or 5-6 weeks) or severe hypoxia of 7000 m (8 h/day, 5-6 weeks). Ventricular arrhythmias induced by coronary artery occlusion were assessed in isolated buffer-perfused hearts or open-chest animals. In the isolated hearts, both antiarrhythmic and proarrhythmic effects were demonstrated depending on the degree and duration of hypoxic exposure. Whereas the adaptation to 5000 m for 4 h/day decreased the total number of premature ventricular complexes (PVCs), extending the daily exposure to 8 h and/or increasing the altitude to 7000 m led to opposite effects. On the contrary, the open-chest rats adapted to IHA hypoxia exhibited an increased tolerance to arrhythmias that was even more pronounced at the higher altitude. The distribution of PVCs over the ischemic period was not altered by any protocol of adaptation. It may be concluded that adaptation to IHA hypoxia is associated with enhanced tolerance of the rat heart to ischemic arrhythmias unless its severity exceeds a certain upper limit. The opposite effects of moderate and severe hypoxia on the isolated hearts cannot be explained by differences in the occluded zone size, heart rate or degree of myocardial fibrosis. The proarrhythmic effect of severe hypoxia may be related to a moderate left ventricular hypertrophy (27 %), which was present in rats adapted to 7000 m but not in those adapted to 5000 m. This adverse effect can be overcome by an unknown protective mechanism(s) that is absent in the isolated hearts., G. Asemu, J. Neckář, O. Szárszoi, F. Papoušek, B. Ošťádal, F. Kolář., and Obsahuje bibliografii
Photosynthetic electron flux allocation, stomatal conductance, and the activities of key enzymes involved in photosynthesis were investigated in Rumex K-1 leaves to better understand the role of nitric oxide (NO) in photoprotection under osmotic stress caused by polyethylene glycol. Gas exchange and chlorophyll fluorescence were measured simultaneously with a portable photosynthesis system integrated with a pulse modulated fluorometer to calculate allocation of photosynthetic electron fluxes. Osmotic stress decreased stomatal conductance, photosynthetic carbon assimilation, and nitrate assimilation, increased Mehler reaction, and resulted in photoinhibition. Addition of external NO enhanced the stomatal conductance, photosynthetic rate, activities of glutamine synthetase and nitrate reductase, and reduced Mehler reaction and photoinhibition. These results demonstrated that osmotic stress reduced CO2 assimilation, decreasing the use of excited energy via CO2 assimilation which caused significant photoinhibition. Improving stomatal conductance by the addition of external NO enhanced the use of excited energy via CO2 assimilation. As a result, less excited energy was allocated to Mehler reaction, which reduced production of reactive oxygen species via this pathway. We suppose that Mehler reaction is not promoted unless photosynthesis and nitrogen metabolism are prominently inhibited. and H. D. Li ... [et al.].