Plants of cassava (Manihot esculenta Crantz) were raised in a sand root medium watered with nutrient solutions, under greenhouse conditions. As the N-supply increased, shoot dry mass was enhanced to a greater extent than root dry mass, thus leading to an increased shoot to root ratio. In leaves, contents of total soluble saccharides, non-reducing saccharides, and inorganic phosphate increased linearly with increasing N-supply. An opposite response was found for reducing saccharides and starch. In general, content of non-reducing saccharides was considerably greater than starch content. Activity of sucrose synthase was not detected, regardless of the N-treatments; by contrast, activity of neutral and acid invertases increased with increasing N-availability. Roots accumulated more total soluble saccharides, but less reducing saccharides and starch, as the N-supply increased. Photosynthetic rates decreased with increasing N-deficiency. Such a decrease was circumstantially associated to reducing saccharide, but not starch, accumulation. Results suggest a limited capacity for carbon export from source leaves under N-limitation. and J. L. Cruz ... [et al.].
Cadmium is one of the most dangerous environmental pollutants, affecting, among other things, plant mineral composition. It easily interacts with iron, one of the most important elements for plant growth and metabolism. This interaction, including modifying effects of lowered or excessive Fe supply on Cd-exposed plants and its consequences for the photosynthetic apparatus is reviewed. The influence of modified Fe and Cd supply on the uptake of both metals, their distribution, plant growth, and photosynthesis is also explained. Moderate Fe excess has a beneficial influence on Cd-treated plants, resulting in more intensive growth, photosynthetic pigments accumulation, and more efficient light phase of photosynthesis. Nutrient-medium Fe deficiency increases plant susceptibility to Cd. The main open questions of Cd/Fe interaction are: (1) the strong Fe-dependency of Cd mobility within the plant, and (2) photosynthetic dark phase adaptation to Cd stress. and A. Siedlecka, Z. Krupa.
Chloroplasts are commonly the site of the earliest abiotic injury visible in plant ultrastructure. In this study, six inbred lines of maize (Zea mays L.) were used to analyze changes in the ultrastructure of chloroplasts and related physiological parameters under conditions of drought stress simulated by 20% polyethylene glycol 6000 (-0.6 MPa) for two days. Chloroplasts of three maize lines proved to be more sensitive. They showed changes in the ultrastructure in response to drought, including damage of thylakoid membranes, an increase in the number and size of plastoglobuli, swelling of thylakoid membranes both stromal and granal, disorganization of the thylakoid membrane system, an obvious increase in the intrathylakoid space, and a decrease in the
length-to-width ratio and area of chloroplasts. In addition, the contents of malondialdehyde increased markedly in the sensitive lines. Contrary to the sensitive lines, stable structures and shapes of chloroplasts were observed in the drought-resistant lines; it could be considered as an advantage contributing to drought tolerance in the plants. In addition, the drought index of leaf fresh mass (LMDI) in the drought-sensitive lines was ≤ 0.5, which was also associated with a lower content of leaf chlorophyll. In contrast, drought tolerance coincided with lesser growth reduction, and higher LMDI and leaf chlorophyll content., R. X. Shao, L. F. Xin, H. F. Zheng, L. L. Li, W. L. Ran, J. Mao, Q. H. Yang., and Obsahuje seznam literatury
In seedlings of Vigna radiata (L.) R. Wilczek cultivars ADT-1 and CO-5 exposed to acidic showers (H2SO4 : HNO3 : HCl, 4 : 2 : 1, v/v) of different pH (7.0, 5.5, 4.0, and 2.5) for 10 d, net CO2 uptake and stomatal conductance were reduced. The chlorophyll (Chl) a and b contents were reduced but the carotenoid (Car) content increased. In vivo Chl a fluorescence patterns of both the cultivars were altered. No significant change in photosystem (PS) 1 activity was observed except at pH 2.5 where an inhibition was evident. By contrast, PS2 activities declined rapidly with increasing acidity. The room temperature absorption spectra of isolated chloroplasts showed very little changes. SDS-PAGE analysis revealed depletion of 23, 33, and 55 kDa polypeptides. Cultivar CO-5 was more sensitive to acidic rain than cv. ADT-1. and G. Kumaravelu, M. P. Ramanujam.
Over last decades, several studies have been focused on
short-term high light stress in lichens under laboratory conditions. Such studies reported a strong photoinhibition of photosynthesis accompanied by a partial photodestruction of PSII, involvement of photoprotective mechanisms, and resynthetic processes into gradual recovery. In our paper, we applied medium [800 μmol(photon) m-2 s-1] light stress to induce negative changes in PSII funcioning as well as pigment and glutathione (GSH) content in two Antarctic fruticose lichen species. Chlorophyll (Chl) fluorescence parameters, such as potential and effective quantum yield of photosynthetic processes and fast transients (OJIP) recorded during high light exposition and recovery, revealed that Usnea antarctica was less susceptible to photoinhibition than U. aurantiaco-atra. This might be supported by a more pronounced high light-induced reduction in Chl a and b contents in U. aurantiaco-atra compared with U. antarctica. In both experimental species, total GSH showed an initial increase during the first 30-40 min of high light treatment followed by a decrease (60 min) and an increase during dark recovery. Full GSH recovery, however, was not finished in U. aurantiaco-atra even after 5 h indicating lower capacity of photoprotective mechanisms in the species. OJIP curves showed high light-induced decrease in both species, however, the recovery of the OJIPs shape to pre-photoinhibitory values was faster and more apparent in U. antarctica than in U. aurantiaco-atra. The results are discussed in terms of sensitivity of the two species to photoinhibition and their photosynthetic performance in natural environment., K. Balarinová, M. Barták, J. Hazdrová, J. Hájek, J. Jílková., and Obsahuje bibliografii
The effects of phosphate concentration on plant growth and photosynthetic performance were examined in leaves of Zizania latifolia. Plants were grown for four weeks in a solution containing 0, 0.16, 0.64, and 2.56 mM orthophosphate. The results showed that the highest net photosynthetic rate (P N) was achieved at 0.64 mM orthophosphate, which corresponded to the maximum content of organic phosphorus in leaves. Low phosphorus (low-P) content in the culture solution inhibited plant growth, affecting plant height, leaf length, leaf number, tiller number, and fresh mass of leaf, sheath, culm, root, and total plant. In addition, we observed that low-P (0.16 mM) did not hinder the growth of roots but increased the root:shoot ratio, and significantly decreased the chlorophyll content, P N, stomatal conductance, and transpiration rate, but increased the intercellular CO2 concentration. Additionally, low-P significantly decreased the maximum carboxylation rate of Rubisco, the maximum rate of ribulose-1,5-bisphosphate regeneration, the effective quantum yield of PSII photochemistry, photochemical quenching coefficient, and electron transport rate, but increased the nonphotochemical quenching. However, the maximal quantum yield of PSII photochemistry was not significantly affected by low-P. High phosphorus (2.56 mM) caused only a slight decrease in gas-exchange parameters. Therefore, the decrease in growth of P-deficient Z. latifolia plants could be attributed to the lowered photosynthetic rate., N. Yan, Y.-L. Zhang, H.-M. Xue, X.-H. Zhang, Z.-D. Wang, L.-Y. Shi, D.-P. Guo., and Obsahuje seznam literatury
Water availability is a major limiting factor in desert ecosystems. However, a winter snowfall role in the growth of biological soil crusts is still less investigated. Here, four snow treatments were designed to evaluate the effects of snow depth on photosynthesis and physiological characteristics of biological soil crusts. Results showed that snow strongly affected the chlorophyll fluorescence properties. The increased snow depth led to increased contents of photosynthetic pigments and soluble proteins. However, all biological soil crusts also exhibited a decline in malondialdehyde and soluble sugar contents as snow increased. Results demonstrated that different biological soil crusts exhibited different responses to snow depth treatment due to differences in their morphological characteristics and microhabitat. In addition, interspecies differentiation in response to snow depth treatment might affect the survival of some biological soil crusts. Further, this influence might lead to changes in the structural composition and functional communities of biological soil crusts., R. Hui, R. M. Zhao, L. C. Liu, Y. X. Li, H. T. Yang, Y. L. Wang, M. Xie, X. Q. Wang., and Obsahuje bibliografii
Photosynthesis in iron-deficient soybean and maize leaves decreased drastically. The quantum yield of photosystem 2 (PS2) electron transport (ΦPS2), the efficiency of excitation energy capture by open PS2 reaction centres (Fv'/Fm'), and photochemical quenching coefficient (qP) under high irradiance were lowered significantly by iron deficiency, but non-photochemical quenching (NPQ) increased markedly. The analysis of the polyphasic rise of fluorescence transient showed that iron depletion induced a pronounced K step both in soybean and maize leaves. The maximal quantum yield of PS2 photochemistry (Φpo) decreased only slightly, however, the efficiency with which a trapped exciton can move an electron into the electron transport chain further than QA (Ψ0) and the quantum yield of electron transport beyond QA (ΨEo) in iron deficient leaves decreased more significantly compared with that in control. Thus not only the donor side but also the acceptor of PS2 was probably damaged in iron deficient soybean and maize leaves. and Chuang-Dao Jiang, Hui-Yuan Gao, Qi Zou.
Carotenoids (Car) regulate energy flow in photosynthesis by a specific Car-chlorophyll (Chl) interaction in the singlet-excited states, leading to a reduction in Chl fluorescence. We studied quenching of Chl a-fluorescence in benzene by trans-β-carotene. Non-linear analysis of the quenching process enables to explain the possible molecular mechanism leading to the de-excitation of Chl a. The fluorescence intensity was measured at 670 nm for excitation wavelengths of 380, 430, 640, and 650 nm. The β -carotene concentrations ranged from 4×10-5 M to 5×10-3 M. When the samples were excited at 640 and 650 nm, the Stern-Volmer plots showed that the quenching process has high rate constants, hence β-carotene is a very efficient quencher. Two different types of quenching process could take place. and D. M. Gazdaru, B. Iorga.
To investigate whether brassinosteroids (BRs) could be used to alleviate chill-induced inhibition of photosynthesis in cucumber (Cucumis sativus L) during chilling and subsequent recovery, the effects of exogenously applied 24-epibrassinolide (EBR) on gas exchange, chlorophyll fluorescence parameters, and antioxidant enzyme activity were studied. Cucumber plants were exposed to chilling under low light (12/8°C and 100 μmol m-2 s-1 PPFD) for 3 days and then recovered under normal temperature and high irradiance (28/18°C and 600 μmol m-2 s-1 PPFD) for 6 days. Chilling significantly decreased the net photosynthetic rate (PN) and stomatal conductance (g s), and increased rate of O2 .- formation and H2O2 and malondialdehyde (MDA) content in cucumber leaves, but did not influence the optimal quantum yield of PSII (Fv/Fm). Chilling also decreased the effective quantum yield of PSII photochemistry (ΦPSII) and photochemical quenching (qP), but induced an increase in nonphotochemical quenching (NPQ), and the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX). High irradiance (600 μmol m-2 s-1) further aggravated the decrease in PN, gs, ΦPSII and qP, and enhanced the increase in reactive oxygen species (ROS) generation and accumulation in the first day of recovery after chilling. However, high irradiance induced a sharp decrease in Fv/Fm and NPQ, as well as the activities of SOD and APX on the first day of recovery. EBR pretreatment significantly alleviated chill-induced inhibition of photosynthesis during chilling stress and subsequent recovery period, which was mainly due to significant increases in gs, ΦPSII, qP and NPQ. EBR pretreatment also reduced ROS generation and accumulation, and increased the activities of SOD and APX during chilling and subsequent recovery. Those results suggest that EBR pretreatment alleviates the chill reduction in photosynthesis and accelerated the recovery rate mainly by increasing of the stomatal conductance, the efficiency of utilization and dissipation of leaf absorbed light, and the activity of the ROS scavenging system during chilling and subsequent recovery period. and W. H. Hu ... [et al.].