Water resources are usually treated as potential resources, directly exploitable by human population on the Earth. Among them, surface water and groundwater can be effectively managed for operational use. Soil water which belongs to the class of subsurface water represents the major volume of terrestrial water resources. The concept of soil water resources as a water source for biosphere was introduced recently by Budagovsky (1985) and is related to the fact, that the soil water is the most important factor of the existence and development of terrestrial vegetation. As a measure of soil water resources, Budagovsky proposed the evapotranspiration rate from the land surface during the frostless period representing the sum of water evaporation by soil and transpiration from stomata of the leaves of terrestrial plants. The primary importance of soil water is in its role as a source of water for biosphere, for the first stage of trophic chain on the Earth. In this review, the role of soil water in biotic and abiotic cycle on the Earth is discussed. Possible directions of the future study of soil water resources in relation to the environment are proposed. and Za zdroje vody na Zemi sa považujú spravidla tie potenciálne zdroje, ktoré môžu byť využité ľudstvom priamo. Priamo môžu byť využité povrchové a podzemné vody. Najväčší objem vody súše na Zemi je reprezentovaný vodami podpovrchovými. Budagovskij (1985) navrhol koncepciu pôdnych vôd ako zdroja vody pre biosféru; táto koncepcia je založená na skutočnosti, že pôdne vody sú najvýznamnejším zdrojom vody pre suchozemskú vegetáciu. Ako mieru zdrojov pôdnej vody Budagovskij navrhol evapotranspiráciu z pevniny počas bezmrazového obdobia, ako súčet výparu z pôdy a transpirácie cez prieduchy suchozemských rastlín. Najvýznamnejšou úlohou vody v pôde je to, že je zdrojom vody pre biosféru, pre prvú časť trofického reťazca na Zemi. Táto práca pojednáva o úlohe vody v pôde v biotickom a abiotickom cykle na Zemi. Sú naznačené tiež možné smery výskumu zdrojov vody v pôde v kontexte k biosfére.
In this paper, to evaluate the hydrological effects of Caragana korshinskii Kom., measured data were combined with model-simulated data to assess the C. korshinskii soil water content based on water balance equation. With measured and simulated canopy interception, plant transpiration and soil evaporation, soil water content was modeled with the water balance equation. The monthly variations in the modeled soil water content by measured and simulated components (canopy interception, plant transpiration, soil evaporation) were then compared with in situ measured soil water content. Our results shows that the modeled monthly water loss (canopy interception + soil evaporation + plant transpiration) by measured and simulated components ranges from 43.78 mm to 113.95 mm and from 47.76 mm to 125.63 mm, respectively, while the monthly input of water (precipitation) ranges from 27.30 mm to 108.30 mm. The relative error between soil water content modeled by measured and simulated components was 6.41%. To sum up, the net change in soil water (ΔSW) is negative in every month of the growing season. The soil moisture is approaching to wilting coefficient at the end of the growth season, and the soil moisture recovered during the following season.
The present article demonstrates the impact of water content in the soil profile on the formation of rain-water outflow below the soil profile. The example of the soil water regime during the vegetation season is applied to show two alternative types of soil water movement: the diffusion type flow (DTF) in drier soils and the instability-driven flow (IDF) in soils with a higher soil moisture content. This responds to two phases of soil water regime alternation - the percolation phase (IDF is taking place) and the accumulation phase (DTF is taking place). In the course of the percolation phase, the infiltrating rain water flows through the soil without causing any considerable increment of water content in the soil profile. During the accumulation phase rain water accumulates in the soil, without practically flowing through the soil profile. The soil profile functions like a reservoir filled with rain water and emptied by the withdrawal of water for plant transpiration. and Príspěvek ukazuje, jak aktuální zásoba půdní vody rozhoduje o tvorbě odtoku srážkové vody z půdy do podloží. Na příkladu vodního režimu půdy ve vegetační sezóne je vyvozeno, že střídavě dochází ke dvěma odlišným typům proudění vody v půdě: proudění difuzního typu DTF v pude sušší a nestabilitou hnané proudění (perkolační) IDF v půdě vlhčí. Tomu odpovídá střídání dvou fází vodního režimu půd - fáze perkolační (probíhá IDF) a fáze akumulační (probíhá DTF). V perkolační fázi infiltrující srážková voda půdou protéká, aniž by se v ní významně akumulovala. V akumulační fázi se srážková voda v půdě zadržuje, téměř neodtéká do podloží. Půda se chová jako nádrž, která se zaplnuje srážkovou vodou a prázdní odběrem vody na transpiraci rostlin.
This study explored the effect of soil water repellency (SWR) on soil hydrophysical properties with depth. Soils were sampled from two distinctly wettable and water repellent soil profiles at depth increments from 0–60 cm. The soils were selected because they appeared to either wet readily (wettable) or remain dry (water repellent) under field conditions. Basic soil properties (MWD, SOM, θ v) were compared to hydrophysical properties (Ks, Sw, Se, Sww, Swh, WDPT, RIc, RIm and WRCT) that characterise or are affected by water repellency. Our results showed both soil and depth affected basic and hydrophysical properties of the soils (p<0.001). Soil organic matter (SOM) was the major property responsible for water repellency at the selected depths (0–60). Water repellency changes affected moisture distribution and resulted in the upper layer (0–40 cm) of the repellent soil to be considerably drier compared to the wettable soil. The water repellent soil also had greater MWDdry and Ks over the entire 0–60 cm depth compared to the wettable soil. Various measures of sorptivity, Sw, Se, Sww, Swh, were greater through the wettable than water repellent soil profile, which was also reflected in field and dry WDPT measurements. However, the wettable soil had subcritical water repellency, so the range of data was used to compare indices of water repellency. WRCT and RIm had less variation compared to WDPT and RIc. Estimating water repellency using WRCT and RIm indicated that these indices can detect the degree of SWR and are able to better classify SWR degree of the subcritical-repellent soil from the wettable soil.
This paper is a critical appraisal of the most recent attempt from cognitive science in general, developmental and evolutionary biology in particular, to understand the nature and mechanisms underlying consciousness as proposed by Anton J.M. Dijker. The proposal, briefly stated, is to view consciousness as a neural capacity for objec- tivity. What makes the problem of consciousness philosophically and scientifically challenging may be stated as follows: If consciousness has a first-person ontology and our best scientific theories have a third-person ontology, how can we come up with a satisfactory theory? Moreover, if the reduction of one to the other is impossible, what are we supposed to do? By neglecting what Chalmers calls the ''hard problem'' of consciousness, Dijker’s proposal seems unable to respond to the foregoing questions, and these questions, I maintain, are the very motivations that most of us have when we inquire about consciousness., Tento článek je kritickým posouzením posledního pokusu o kognitivní vědu obecně, zejména vývojové a evoluční biologie, pochopit podstatu a mechanismy, které jsou základem vědomí, jak navrhl Anton JM Dijker. Návrh, stručně řečeno, je vnímat vědomí jako neurální schopnost objektivity. Co dělá problém vědomí filozoficky a vědecky náročný, lze říci následovně: Pokud má vědomí první ontologii člověka a naše nejlepší vědecké teorie mají ontologii třetí osoby, jak můžeme přijít s uspokojivou teorií? Pokud je navíc redukce jednoho na druhého nemožná, co máme dělat? Zanedbáním toho, co Chalmers nazývá ,,tvrdým problémem'' vědomí, se zdá, že Dijkerův návrh nedokáže odpovědět na výše uvedené otázky, and John Ian K. Boongaling
In this short paper, I focus on several properties of the so-called Hybrid View of Fictional Characters. First, I present the theory to be discussed. Subsequently, I present several remarks on the consequences of the theory, mainly the problem of identifying fictional characters and the problem of modal properties of sentences containing fictional names.
We investigated the sorption-desorption behaviour of acid herbicide MCPA (4-chloro-2-methylphenoxy acetic acid) in five soils (denoted as A1-5), three bottom sediments (S1-3) and in two river sediments (L1-2) at two initial concentrations in aqueous solution - C0 = 0.5 and 10 mg L-1. Sorption and desorption of MCPA was measured by a batch equilibrium technique using analytical pure MCPA. There was no significant influence of the initial concentration of MCPA on its equilibrium distribution between soil/sediment and aqueous solution. The difference between distribution coefficient KD at C0 = 0.5 mg L-1 and KD at C0 = 10 mg L-1 was found only in the case of one bottom sediment (S2). Simple regression analysis between KD at C0 = 0.5 and 10 mg L-1 and soil/sediment properties indicated that the most important property which determined the variation in MCPA sorption is organic carbon (r = 0.885** and r = 0.921***, respectively). Similarly, the desorption of MCPA was inversely proportional to organic carbon content of the soils and sediments used (r = -0.821* and r = -0.888**). These observations showed that sorption-desorption behaviour of MCPA in soils and sediments was primarily controlled by organic components of the geosorbents used. Overall, the sorption extent of MCPA in soils and sediments was low (Psorp ≈ 5 - 53 %; KD = 0.131 - 2.827 L kg-1) and desorption extent was relatively high (Pdes ≈ 11 - 52 %), especially in soils and sediments with the lower organic carbon content. The experimental results and calculated values of groundwater ubiquity score GUS and relative leaching potential index RLPI imply that MCPA is very mobile in all soils and has high potential to contaminate groundwater. and Laboratórnymi metódami sme skúmali sorpčno-desorpčné správanie herbicídu MCPA (kyselina 4-chlór2-metyl fenoxyoctová) s kyslým charakterom (pKa = 3,07) v 5 vzorkách pôd (A1-5), v 3 vzorkách dnových sedimentov (S1-3) a v 2 vzorkách riečnych sedimentov (L1-2) pri dvoch koncentráciách vo vodnom roztoku - 0,5 a 10 mg l-1. Počiatočná koncentrácia MCPA vo vodnom roztoku nemala vplyv na jeho rozdelenie medzi pôdu/sediment a vodný roztok, iba v prípade 1 vzorky dnového sedimentu (S2) bol zistený rozdiel v rozdeľovacích koeficientoch KD. Sorbované množstvo MCPA v sledovaných pôdach a sedimentoch priamo úmerne záviselo od celkového obsahu organického uhlíka. Podobne, vodou desorbované (extrahované) množstvo MCPA z pôd a sedimentov vyjadrené v % (Pdes) nepriamo úmerne záviselo od celkového obsahu organického uhlíka. Tieto pozorovania dokumentujú, že sorpčno-desorpčné správanie MCPA v pôdach a sedimentoch je primárne kontrolované organickými zložkami sledovaných geosorbentov. Celkovo bol sorbovaný podiel MCPA v pôdach a sedimentoch nízky (Psorp ≈ 5-53 %; KD = 0,131-2,827 l kg-1) a desorbované množstvo relatívne vysoké (Pdes ≈ 11-52 %), zvlášť v pôdach a sedimentoch s nižším obsahom organického uhlíka. Experimentálne výsledky a vypočítané hodnoty GUS (Groundwater Ubiquity Score) a RLPI (Relative Leaching Potential Index) poukazujú na výraznú pohyblivosť MCPA v pôdach a vysokú tendenciu MCPA preniknúť do podzemných vôd.
Five soils from Slovakia (denoted ŽH, ŽHV, CH, CHN and PD) which differed with respect to organic matter and clay content, were selected for kinetic and equilibrium studies of chlorotoluron sorption. First- and second-order kinetic equations were used for description of differences in chlorotoluron sorption rates in studied soils. Chlorotoluron sorption rate could be better expressed by second-order kinetic equation. Comparing rate constant values of first-order sorption k1 and initial sorption rate values v0 of second-order, the same order in decrease of sorption rate was obtained: v(ŽHV) > v(CHN) > v(ŽH) > v(CH) > v(PD). The experimental sorption isotherms fitted very well with the Freundlich and the Henry?s (linear) isotherm. Freundlich coefficients KF for ŽH, ŽHV, PD, CHN and CH soils were 10.96, 8.21, 6.36, 6.58 and 6.63 ?g g-1 (cm3 ?g-1)N, respectively. KD values for chlorotoluron sorption by ŽH, ŽHV, PD, CHN and CH soils were 16.62, 14.91, 10.39, 9.6 and 7.36 cm3 g-1, respectively. Sorption increased with increasing clay content (?0.002 mm (%), R2 = 0.855) and organic carbon content (Cox [%], R2 = 0.703). Results of laboratory trials suggested that studied agricultural soils served as a relatively efficient purifying filters through the sorption in soils. Therefore, extensive penetration of chlorotoluron into the groundwater shouldn't be very high. and Pri laboratórnom štúdiu rýchlosti sorpcie a sorpčných izoteriem chlortoluronu sme použili päť vzoriek pôd (s označením ŽH, ŽHV, CH, CHN a PD) s rozdielnym obsahom organického uhlíka a ílových častíc. Rýchlosť sorpcie chlortoluronu v pôdach sme opísali rýchlostnou rovnicou reakcie prvého a druhého poriadku. Experimentálne získané časové závislosti sorbovaného množstva chlortoluronu vyhovovali rýchlostnej rovnici reakcie druhého poriadku. Na základe hodnoty rýchlostnej konštanty k1 reakcie prvého poriadku a hodnoty počiatočnej rýchlosti sorpcie v0 podľa reakcie druhého poriadku sme zistili takéto poradie v poklese rýchlosti sorpcie chlortoluronu pre všetky vzorky pôd: v(ŽHV) >v(CHN) >v(ŽH) >v(CH) > >v(PD). Experimentálne určené adsorpčné izotermy chlortoluronu sme vyhodnotili Freundlichovou a Henryho adsorpčnou izotermou. Zistili sme nasledujúce hodnoty koeficienta KF sorpcie chlortoluronu pôdami ŽH, ŽHV, PD, CHN a CH: 10,96; 8,21; 6,36; 6,58 a 6,63 µg g-1 (cm3 µg-1) N . Distribučné koeficienty KD sa pohybovali v rozmedzí od 16,62; 14,91; 10,39; 9,71 až do 7,36 cm3 g-1. Koeficient KF koreloval s obsahom ílovej frakcie (R2 = 0,855) a obsahom organického uhlíka (R2 = 0,703). Laboratórny výskum ukázal, že uvedené poľnohospodárske pôdy môžu v dôsledku silnej sorpcie relatívne účinne zabraňovať prenikaniu chlortoluronu pôdnym profilom.