Influence of different phosphorus concentrations was studied in four rice varieties (Akhanphou, MTU1010, RP BIO 226, and Swarna) differing in their tolerance to low phosphorus. There was an increase in shoot and root dry mass with the increase in phosphorus concentration. At the low phosphorus concentration at both tillering and reproductive stages, Swarna, followed by Akhanphou, recorded maximum biomass for both roots and shoots, while the minimum was observed in RP BIO 226. Reduction in photosynthetic rate, stomatal conductance, transpiration rate, and internal CO2 concentration at low phosphorus concentrations were observed at both tillering and reproductive stages in all the genotypes. In low phosphorus, maximum photosynthetic rate was found in Swarna followed by Akhanphou. Phosphorus deficiency did not alter the maximum efficiency of PSII photochemistry, however, there was a reduction in effective PSII quantum yield, electron transport rate, and coefficient of photochemical quenching, while the coefficient of nonphotochemical quenching was higher in the low phosphorus-treated plants. Prolonged exposure to excessive energy and failure to utilize the energy in carbon-reduction cycle induced the generation of reactive oxygen species, which affected PSII as indicated by the fluorescence traits. The reduction was less severe in case of Swarna and Akhanphou. The activities of superoxide dismutase, peroxidase, and catalase increased in roots under low phosphorus concentration indicating that photoprotective mechanisms have been initiated in rice plants in response to phosphorus deficiency. Comparatively, Swarna and Akhanphou exhibited a higher biomass, higher photosynthetic rate, and better reactive oxygen species-scavenging ability which conferred tolerance under low phosphorus conditions., N. Veronica, D. Subrahmanyam, T. Vishnu Kiran, P. Yugandhar, V. P. Bhadana, V. Padma, G. Jayasree, S. R. Voleti., and Obsahuje bibliografii
Low temperature significantly influences chloroplast development and chlorophyll (Chl) biosynthesis, so effect of coldness on Chl content and Chl fluorescence characteristics was investigated in C. bungeana (Chorispora bungeana Fisch. & C.A. Mey). The levels of transcript and protein of an enzymatic step during Chl biosynthesis in response to chilling (4°C) and freezing (-4°C) were also examined in this work. Significant reduction in total Chl content was observed, but the reduction was much less at 4°C than that at -4°C. Moreover, the maximal quantum efficiency of photosystem II (PSII) photochemistry, indicated by Fv/Fm, decreased in the first 12 h, but then started to increase and reached higher levels than the control at 24 h and 48 h at 4°C, but decreased continuously at -4°C. Whereas quantum yield of PSII (ΦPSII) showed no significant difference between the chilling-stressed and the control seedlings, at -4°C, ΦPSII was markedly reduced with the prolonged treatment. In general, there were no significant responses of photochemical quenching (qP) and non-photochemical quenching (NPQ) to cold treatment. Meanwhile, the full-length cDNA of NADPH:protochlorophyllide oxidoreductase (POR, EC 1.3.1.33) was isolated and termed CbPORB (GenBank Accession No. FJ390503). Its transcript and protein content only slightly declined at 4°C, but dramatically reduced at -4°C with the time. These results strongly suggest that CbPORB possesses certain resistant characteristics and is a major player in Chl biosynthesis process involved in plant growth and development of C. bungeana under cold environmental conditions. and Y. H. Li ... [et al.].
The cold stress effect on early vigour and photosynthesis efficiency was evaluated for five industrial chicory varieties with contrasting early vigour. The relationships between the growth and physiological parameters were assessed. The varieties were examined at three growth temperatures: 16 (reference), 8 (intermediate) and 4 °C (stress). The effect was measured using physiological processes (growth, photosynthesis, chlorophyll a fluorescence), and pigment content. The analysis of the measured growth parameters (dry leaf and root mass, and leaf area) indicated that temperature had a significant effect on the varieties, but the overall reaction of the varieties was similar with lowering temperatures. The photosynthesis and chlorophyll a fluorescence measurements revealed significant changes for the photosynthesis (maximum net photosynthesis, quantum efficiency, light compensation point and dark respiration) and chlorophyll a fluorescence parameters (photochemical and non-photochemical quenching) with lowering temperatures for Hera and Eva, two extremes in youth growth. No significant differences could be found between the extremes for the different temperatures. The pigment content analysis revealed significant differences at 4 °C in contrast to 16 and 8 °C, especially for the xanthophyll/carotenoid pool, suggesting a protective role. Subsequently, the relationship between the physiological processes was evaluated using principal component analysis. At 4 °C, 2 principal components were detected with high discriminating power for the varieties and similar classification of the varieties as determined in the growth analysis. This provides a preview on the possible relationships between photosynthesis and growth for industrial chicory at low temperatures. and S. Devacht ... [et al.].
Influence of manganese (Mn) toxicity on photosynthesis in ricebean (Vigna umbellata) was studied by the measurement of gas exchange characteristics and chlorophyll fluorescence parameters. The net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (gs) were reduced with increasing Mn concentration in nutrient solution. The reduction in gs and E was more pronounced at 6 d of Mn treatment. However, PN declined at 2 d of Mn treatment implying that the reduction in photosynthesis was not due to the direct effect of Mn on stomatal regulation. Mn did not affect the maximum efficiency of photosystem 2 (PS2) photochemistry (Fv/Fm). A reduction in photochemical quenching (qP) and excitation capture efficiency of open PS2 (Fv'/Fm') with a concomitant increase in qN was observed. This implies that reduced demand for ATP and NADPH due to the reduction in photosynthesis causes a down-regulation of PS2 photochemistry and thus a high pH gradient (increase in qN) and limited electron transport (decreased qP). and Desiraju Subrahmanyam, V. S. Rathore.
Spearmint cultivars MSS-5, Arka, and Neera grown in nutrient culture in controlled conditions differed in plant height, number of tillers, internodal position, fresh mass, dry mass, leaf stem ratio, and chlorophyll contents. Initial transpiration rate, stomatal conductivity, and CO2 exchange rate showed better increase in MSS-5 genotype. Mn stress decreased oil content whereas the content of oil constituent carvone increased in MSS-5 and Arka. and P. Singh, A. Misra, N. K. Srivastava.
Seedlings of chile ancho pepper were grown in pots containing a pasteurized mixture of sand and a low phosphorus (P) sandy loam soil, and either inoculated (VAM) or not inoculated (NVAM) with the endomycorrhizal fungus Glomus intraradices. Long Ashton nutrient solution (LANS) was modified to supply P to the seedlings at 0, 11, and 44 g(P) m-3 (P0, P11, P44, respectively). Low P depressed net photosynthetic rate (PN), stomatal conductance (gs), phosphorus use efficiency (PN/P), and internal CO2 concentration (Ci). The mycorrhiza alleviated low P effects by increasing PN, gs, PN/P, and decreasing Ci. At P0, Ci of NVAM plants was equal to or higher than that of VAM plants, suggesting nonstomatal inhibition of photosynthesis. Gas exchange of VAM plants at P0 was similar to that of NVAM plants at P11. Endomycorrhiza increased leaf number, leaf area, shoot, root and fruit mass at P0 and P11 compared to NVAM plants. Reproductive growth was enhanced by 450 % in mycorrhizal plants at P44. Root colonization (arbuscules, vesicles, internal and extraradical hyphae development) was higher at lower P concentrations, while sporulation was unaffected. The enhanced growth and gas exchange of mycorrhizal plants was in part due to greater uptake of P and greater extraradical hyphae development. and L. Aguilera-Gomez ... [et al.].
The influence of phosphorus (P) and nitrogen (N) supply on biomass, leaf area, photon saturated photosynthetic rate (Pmax), quantum yield efficiency (α), intercellular CO2 concentration (Ci), and carboxylation efficiency (CE) was investigated in Vicia faba. The influence of P on N accumulation, biomass, and leaf area production was also investigated. An increase in P supply was consistently associated with an increase in N accumulation and N productivity in terms of biomass and leaf area production. Furthermore, P increased the photosynthetic N use efficiency (NUE) in terms of Pmax and α. An increase in P supply was also associated with an increase in CE and a decrease in Ci. Under variable daily meteorological conditions specific leaf nitrogen content (NL), specific leaf phosphorus content (PL), specific leaf area (δL), root mass fraction (Rf), Pmax, and α remained constant for a given N and P supply. A monotonic decline in the steady-state value of Rf occurred with increasing N supply. δL increased with increasing N supply or with increasing NL. We tested also the hypothesis that P supply positively affects both N demand and photosynthetic NUE by influencing the upper limit of the asymptotic values for Pmax and CE, and the lower limit for Ci in response to increasing N. and Y. Jia, V. M. Gray.
Tolerance to phosphorus stress was studied in Capsicum annuum L. Chile ancho cv. San Luis and bell pepper cv. Jupiter plants. Plants were fertilized weekly with Long-Ashton nutrient solution (LANS) modified to supply 0, 11, 22, 44, 66, or 88 g(P) m-3 (P0, P11, P22, P44, P66, P88). Phosphorus stress occurred in both cultivars at P0 and P11, with reduced plant growth and development. At P0, the lowest percentage of total biomass was directed toward reproductive growth. The root/shoot ratio was greatest at P0, reflecting greater dry matter partitioning to the root system. Growth of 'San Luis' was more sensitive to phosphorus stress than 'Jupiter'. A greater percentage of total biomass was directed towards reproductive growth in 'Jupiter' than 'San Luis'. Increasing P nutrition elevated leaf tissue P in both cultivars with highest leaf tissue P at P88. There were no differences in tissue P between P0 and P11 'San Luis' plants, whereas P0 'Jupiter' plants had the lowest tissue P. Low P-plants generally had the highest tissue N and lowest S, Mn, and B. In both cultivars, gas exchange was lowest at P0, as indicated by reduced stomatal conductance (gs) and net photosynthetic rate (PN). Internal CO2 concentration and leaf-to-air vapor pressure difference (VPD) were generally highest with P-stressed plants. Phosphorus use efficiency, as indicated by PN per unit of leaf tissue P concentration (PN/P), was highest at P11. Generally, no P treatments exceeded the gas exchange levels obtained by P44 (full strength LANS) plants. Both PN and gs declined during reproductive growth in 'San Luis', which fruits more rapidly than 'Jupiter', whereas no reduction in gas exchange occurred with 'Jupiter'. and F. T. Davies ... [et al.].
In cotton (Gossypium hirsutum L.) grown in controlled-environment growth chamber the effects of K deficiency during floral bud development on leaf photosynthesis, contents of chlorophyll (Chl) and nonstructural saccharides, leaf anatomy, chloroplast ultrastructure, and plant dry matter accumulation were studied. After cotton plants received 35-d K-free nutrient solution at the early square stage, net photosynthetic rate (PN) of the uppermost fully expanded main-stem leaves was only 23 % of the control plants receiving a full K supply. Decreased leaf PN of K-deficient cotton was mainly associated with dramatically low Chl content, poor chloroplast ultrastructure, and restricted saccharide translocation, rather than limited stomata conductance in K-deficient leaves. Accumulation of sucrose in leaves of K-deficient plants might be associated with reduced entry of sucrose into the transport pool or decreased phloem loading. K deficiency during squaring also dramatically reduced leaf area and dry matter accumulation, and affected assimilate partitioning among plant tissues. and Duli Zhao, D. M. Oosterhuis, C. W. Bednarz.
The effects of potassium nutrition [0, 6.25, 12.50, 25.00 g(K) m-2 of K2SO4 or KCl] on gas exchange characteristics and water relations in four cultivars (CIM-448, CIM-1100, Karishma, S-12) of cotton were assessed under an arid environment. Net photosynthetic rate (PN) and transpiration rate (E) increased with increased K supply. The leaf pressure potential (Ψp) increased significantly by the addition of 25.00 g(K) m-2 compared to zero K level. The water use efficiency (PN/E) was improved by 24.6 % under the highest K dose compared to zero K. There were positive correlations (0.99**, 0.98**, 0.95**, 0.97**) between K-doses and PN, E, Ψp, and PN/E, respectively. and H. Pervez, M. Ashraf, M. I. Makhdum.