Ichthyophthirius multifiliis Fouquet, 1876, a ciliate parasite, is a cosmopolitan and problematic parasite of cultured freshwater fish. Each geographical isolate of I. multifiliis has variations in life cycle timing under different abiotic water conditions, such as temperature and salinity. We assessed the effects of salinity and temperature on the development and the preferred settlement site of a temperate Australian isolate of I. multifiliis. The time until theront release was significantly different between each temperature; development time was longest at 5 °C with a mean time of 189 h and decreased to a mean time of 11.7 h at 30 °C. At 5 °C our isolate produced a mean of 267 theronts per tomont, which increased to a mean of 493 theronts at 25 °C and reduced to a mean of 288 theronts at 30 °C. Theront length showed an inverse relationship to temperature; mean length was 62 μm at 5 °C and 41 μm at 30 °C. Our isolate reproduced faster at all temperatures and a greater sensitivity to salinity than all reported profiles for temperate isolates. Parasite abundance was highest on the dorsal region of the fish. An accurate understanding of temperature-life cycle information and optimal region to sample for surveillance will aid in the development of specific management plans for the Australian isolate of I. multifiliis, facilitating the strategic timing of treatments., James M. Forwood, James O. Harris, Matt Landos, Marty R. Deveney., and Obsahuje bibliografii
Climate features that influence life cycles, notably severity, seasonality, unpredictability and variability, are summarized for different polar zones. The zones differ widely in these factors and how they are combined. For example, seasonality is markedly reduced by oceanic influences in the Subantarctic. Information about the life cycles of Arctic and Antarctic arthropods is reviewed to assess the relative contributions of flexibility and programming to life cycles in polar regions. A wide range of life cycles occurs in polar arthropods and, when whole life cycles are considered, fixed or programmed elements are well represented, in contrast to some recent opinions that emphasize the prevalence of flexible or opportunistic responses. Programmed responses ale especially common for controlling the appearance of stages that are sensitive to adverse conditions, such as the reproductive adult. The relative contribution of flexibility and programming to different life cycles is correlated with taxonomic affinity (which establishes the general lifecycle framework for a species), and with climatic zone, the habitats of immature and adult stages, and food., Hugh V. Danks, and Lit
C3 photosynthesis at high light is often modeled by assuming limitation by the maximum capacity of Rubisco carboxylation (VCmax) at low CO2 concentrations, by electron transport capacity (Jmax) at higher CO2 concentrations, and sometimes by
triose-phosphate utilization rate at the highest CO2 concentrations. Net photosynthetic rate (PN) at lower light is often modeled simply by assuming that it becomes limited by electron transport (J). However, it is known that Rubisco can become deactivated at less than saturating light, and it is possible that PN at low light could be limited by the rate of Rubisco carboxylation (VC) rather than J. This could have important consequences for responses of PN to CO2 and temperature at low light. In this work, PN responses to CO2 concentration of common bean, quinoa, and soybean leaves measured over a wide range of temperatures and PPFDs were compared with rates modeled assuming either VC or J limitation at limiting light. In all cases, observed rates of PN were better predicted by assuming limitation by VC rather than J at limiting light both below and above the current ambient CO2. One manifestation of this plant response was that the relative stimulation of PN with increasing the ambient CO2 concentration from 380 to 570 µmol mol-1 did not decrease at less than saturating PPFDs. The ratio of VC to VCmax at each lower PPFD varied linearly with the ratio of PN at low PPFD to PN at high PPFD measured at 380 µmol(CO2) mol-1 in all cases. This modification of the standard C3 biochemical model was much better at reproducing observed responses of light-limited PN to CO2 concentrations from
pre-industrial to projected future atmospheric concentrations., J. A. Bunce., and Obsahuje bibliografii
Plant response to the combination of two or more abiotic stresses is different than its response to the same stresses singly. The response of maize (Zea mays L.) photosynthesis, growth, and development processes were examined under sunlit plant growth chambers at three levels of each day/night temperatures (24/16°C, 30/22°C, and 36/28°C) and UV-B radiation levels (0, 5, and 10 kJ m-2 d-1) and their interaction from 4 d after emergence to 43 d. An increase in plant height, leaf area, node number, and dry mass was observed as temperature increased. However, UV-B radiation negatively affected these processes by reducing the rates of stem elongation, leaf area expansion, and biomass accumulation. UV-B radiation affected leaf photosynthesis mostly at early stage of growth and tended to be temperature-dependent. For instance, UV-B radiation caused 3-15% decrease of photosynthetic rate (PN) on the uppermost, fully expanded leaves at 24/16°C and 36/28°C, but stimulated P N about 5-18% at 30/22°C temperature. Moreover, the observed UV-B protection mechanisms, such as accumulation of phenolics and waxes, exhibited a significant interaction among the treatments where these compounds were relatively less responsive (phenolics) or more responsive (waxes) to UV-B radiation at higher temperature treatments or vice versa. Plants exposed to UV-B radiation produced more leaf waxes except at 24/16°C treatment. The detrimental effect of UV-B radiation was greater on plant growth compared to the photosynthetic processes. Results suggest that maize growth and development, especially stem elongation, is highly sensitive to current and projected UV-B radiation levels, and temperature plays an important role in the magnitude and direction of the UV-B mediated responses., S. K. Singh, K. R. Reddy, V. R. Reddy, W. Gao., and Obsahuje bibliografii
Designed experiment of temperature measuring of freezing perishable food process is solved in this article. To provide safe food to consumer is very difficult. The producers in food industry must keep legal requirements in term of processing, packaging, refrigeration, freezing, storage and others. It is necessary to monitor constantly the temperature of food as well as space of cooling, freezing, storage and transport to ensure the quality of food. Measuring devices for monitoring of temperature must keep the metrological requirements in such conditions. The experiment was designed in accordance with all requirements imposed on these foods. The possibilities of using of contact and contactless temperature measurement methods were considered. Based on the analysis and the possibility to realize the experiment, only contact method of temperature measuring was acceded. Achieved results of experiment mention to need for respecting the properties of using measuring instruments, devices for freezing with regard to properties of regulation process as well as intrinsic properties of selected type of freezing food. and Včlánku je riešený navrhnutý experiment merania teploty procesu zmrazovania potravín podliehajúcich skaze. Poskytnúť zdravotne nezávadné potraviny spotrebiteľovi je veľmi náročné. Producenti v potravinárskom priemysle musia dodržiavať legislatívne požiadavky z hľadiska spracovania, balenia, chladenia, mrazenia, uskladnenia a iné. Pre zabezpečenie kvality potravín je nevyhnutné neustále monitorovať teplotu samotných potravín ako i priestor chladenia, mrazenia, uskladnenia a prepravy. Meracie zariadenia na monitorovanie teploty v takýchto podmienkach musia spĺňať metrologické požiadavky. Daný experiment bol navrhnutý s dodržaním všetkých požiadaviek kladených na tieto potraviny. Zvažovali sa možnosti využitia kontaktných ako aj bezkontaktných metód merania teploty. Na základe analýzy a možnosti uskutočnenia experimentu sa pristúpilo len ku kontaktnej metóde merania teploty. Dosiahnuté výsledky experimentu poukazujú na potrebu rešpektovania vlastností použitých meradiel, zariadenia na zmrazovanie s ohľadom na vlastnosti regulácie procesu ako aj na samotné vlastnosti vybraného druhu zmrazovanej potraviny.
Method of groundwater flow velocity determination in sand and gravel aquifer of Danube river is described in the paper. The solution in which seasonal changes of ground and river water temperatures are used is original. It gives good opportunity for solution of different hydrogeological and water management problems. The method application is demonstrated on the example of Sihoť well field in Bratislava Karlova Ves. Results were used in design ground water zones protection. and V príspevku je opísaná metóda určovania rýchlosti prúdenia podzemnej vody v náplavoch rieky Dunaj. Metodický postup, pri ktorom sú využité sezónne zmeny teploty podzemnej a povrchovej vody, je pôvodný a dáva pomerne veľké možnosti uplatnenia v hydrogeológii a vo vodárenstve. V príspevku je opísané využitie metódy v konkrétnych prírodnych podmienkach zdroja pitnej vody na ostrove Sihoť v Bratislave-Karlovej Vsi. Takto zídkané výsledky boli použité pri navrhovaní pásiem hygienickej ochrany zdroja.
Several alternative definitions of extreme events are proposed. As the first step a statistical analysis of daily precipitation measurement time series from the Hurbanovo SHMI Observatory and elaboration of potentially dangerous precipitation events is carried out. Then, combined characteristics based on daily temperature, daily air humidity and daily precipitation totals are computed. The drought index based on normalized deviations from long-term averages is defined. Alternatively, to define extreme events ''Data envelopment analysis'' (DEA) is employed with K-day periods of values of temperature, humidity and precipitation corresponding to decision making units. In this paper we have used the period of K = 10 days for both methodologies for identification of extreme events. The results of all definitions of extreme events are compared. and V článku navrhujeme niekoľko definícií extrémnych udalostí. Ako prvý krok je vypracovaná štatistická analýza denných úhrnov zrážok z observatória SHMÚ v Hurbanove, na základe ktorej označujeme extrémne udalosti. Následne počítame kombinované charakteristiky období sucha založené na denných údajoch teploty, vlhkosti vzduchu a denných úhrnoch zrážok. Index sucha je založený na normalizovaných odchýlkach od dlhodobých priemerov. Alternatívne definujeme extrémne udalosti na základe DEA analýzy, kde K-denné periódy teploty, vlhkosti a zrážok slúžia ako rozhodovacie jednotky. V tomto článku sme na identifikáciu extrémnych udalostí pre obe metodológie použili periódu K = 10 dní. Výsledky všetkých prístupov nakoniec porovnávame.
There is much current discussion about the factors that control the distribution and abundance of animal species, particularly at the edges of their range. The significance of temperature for survival and development is compared in two closely related psyllid species (Craspedolepta nebulosa and C. subpunctata) living on the same host plant (Chamerion angustifolium) (Onagraceae) but displaying different distributions along latitudinal and altitudinal gradients. The following measurements were made at critical periods during the life cycle (a) winter supercooling points (SCPs), (b) tolerance of short (1 min) and long term (1-25) days exposure to sub-zero temperatures above the SCP, (c) tolerance of short term exposure to high spring/summer temperatures and (d) comparative field development rates among species and sites during the early critical part of the growing season. Successful completion of the life cycle is related to heat availability during the growing season. This appears to limit the distribution of the Craspedolepta species, rather than their survival response to thermal extremes. No significant differences were found between the two species in the supercooling point or in their long and short term survival responses at low or high temperatures., Jeremy M. Bird, Ian D. Hodkinson, and Lit
Whole blood surface tension of 15 healthy subjects recorded by the ring method was investigated in the temperature range from 20 to 40 °C. The surface tension σ as a function of temperature t (°C) is described by an equation of linear regression as σ(t) = (-0.473 t + 70.105) × 10-3 N/m. Blood serum surface tension in the range from 20 to 40 °C is described by linear regression equation σ(t) = (-0.368 t + 66.072) × 10-3 N/m and linear regression function of blood sediment surface tension is σ(t) = (-0.423 t + 67.223) ×10-3 N/m., J. Rosina, E. Kvašňák, D. Šuta, H. Kolářová, J. Málek, L. Krajči., and Obsahuje bibliografii
This paper focuses on the impact of changes in temperature on one bay of St Vitus’ Cathedral in Prague Castle. The objective of the study is to simulate as correctly as possible the distribution of temperatures in the structure, and then to compute the thermal dilatation movements. Theoretical simulation of dilatation movements involves simulating the temperatures in the structure and then computing the displacements. Insolation and changes in air temperature around the structure are included in the temperature simulation. The computed temperature fields are used as a loading for computing the forces and deformations of one bay of St Vitus’ Cathedral. The theoretical deformation values obtained by means of the 3-D finite element model were compared with the measurements. The computed surface temperatures were also confronted with the surface temperatures measured in the interior and on the exterior of the cathedral. The results obtained from the simulations correspond well with the measured surface temperatures and deformations., Pavel Beran, Jiří Máca and Petr Fajman., and Obsahuje bibliografii