Bone metabolism is regulated by interaction between two skeletal cells – osteoclasts and osteoblasts. Function of these cells is controlled by a number of humoral factors, including neurohormones, which ensure equilibrium between bone resorption and bone formation. Influence of neurohormones on bone metabolism is often bimodal and depends on the tissue, in which the hormone is expressed. While hypothalamic beta-1 and beta-2-adrenergic systems stimulate bone formation, beta-2 receptors in bone tissue activate osteoclatogenesis and increases bone resorption. Chronic stimulation of peripheral beta-2 receptors is known to quicken bone loss and alter the mechanical quality of the skeleton. This is supported by the observation of a low incidence of hip fractures in patients treated with betablockers. A bimodal osteo-tropic effect has also been observed with serotonin. While serotonin synthetized in brain has osteo-anabolic effects, serotonin released from the duodenum inhibits osteoblast activity and decreases bone formation. On the other hand, both cannabinoid systems (CB1 receptors in the brain and CB2 in bone tissue) are unambiguously osteoprotective, especially with regard to the aging skeleton. Positive (protective) effects on bone have also been shown by some hypophyseal hormones, such as thyrotropin (which inhibits bone resorption) and adrenocorticotropic hormone and oxytocin, both of which stimulate bone formation. Low oxytocin levels have been shown to potentiate bone loss induced by hypoestrinism in postmenopausal women, as well as in girls with mental anorexia. In addition to reviewing neurohormones with anabolic effects, this article also reviews neurohormones with unambiguously catabolic effects on the skeleton, such as neuropeptide Y and neuromedin U. An important aim of research in this field is the synthesis of new molecules that can stimulate osteo-anabolic or inhibiting osteo-catabolic processes., I. Žofková, P. Matucha., and Obsahuje bibliografii
This study investigated whether endothelin (ET)-1-induced increase in myocardial distensibility is preserved in heart failure (HF) and whether it is modulated by nitric oxide (NO) and prostaglandins. New Zealand white rabbits were treated with doxorubicin (1 mg/kg, intravenously twice a week for 8 weeks, DOX-HF group) or saline (control group). Effects of ET-1 (0.1, 1, 10 nM) were tested in papillary muscles from the DOX-HF group and a control group in the presence of: i) intact endocardial endothelium (EE); ii) damaged EE; iii) NG-nitro-L-arginine (L-NNA; NO synthase inhibitor), and iv) indomethacin (INDO; cyclooxygenase inhibitor). In the presence of an intact EE, ET-1 promoted concentration-dependent positive inotropic and lusitropic effects that were maintained after damaging the EE, in the presence of L-NNA or INDO and in the DOX-HF Group. ET-1 reduced resting tension at the end of the isometric twitch (increased diastolic distensibility) by 3.2±1.3 %, 6.0±1.6 % and 8.8±2.7 % (at 0.1, 1 and 10 nM, respectively), in muscles with intact EE, effect that was completely abolished after damaging EE, in the presence of L-NNA or INDO or in the DOX-HF Group. This study demonstrated that the increase in myocardial distensibility induced by ET-1 is absent in HF and is dependent of NO and prostaglandin release., C. Brás-Silva, D. Monteiro-Sousa, A. J. Duarte, M. Guerra, A. P. Fontes-Sousa, C. Moura, J. C. Areias, A. F. Leite-Moreira., and Obsahuje bibliografii a bibliografické odkazy
There are two principal mechanisms of acetylcholine (ACh) release from the resting motor nerve terminal: quantal and non-quantal (NQR); the former being only a small fraction of the total, at least at rest. In the present article we summarize basic research about the NQR that is undoubtedly an important trophic factor during endplate development and in adult neuromuscular contacts. NQR helps to eliminate the polyneural innervation of developing muscle fibers, ensures higher excitability of the adult subsynaptic membrane by surplus polarization and protects the RMP from depolarization by regulating the NO cascade and chloride transport. It shortens the endplate potentials by promoting postsynaptic receptor desensitization when AChE is inhibited during anti-AChE poisoning. In adult synapses, it can also activate the electrogenic Na+/K+-pump, change the degree of synchronization of quanta released by the nerve stimulation and affects the contractility of skeletal muscles., F. Vyskočil, A. I. Malomouzh, E. E. Nikolsky., and Obsahuje seznam literatury
A method using body surface potential maps for assessment of myocardium lesions with changed repolarization is presented and suitable mapping system is introduced. Differences between normal and altered QRST integral maps together with torso volume conductor model were used to determine the equivalent dipole representing the lesion. Performance of the method was studied on simulated data. Changed repolarization was modeled by shortening of myocyte action potentials in regions typical for stenosis of the main coronary arteries. The equivalent dipole estimated the positions of small lesions with a mean error of 9±4 mm (17±14 mm for larger transmural lesions). The subepicardial or subendocardial character of the lesions was reflected in the dipole orientation. Tests of the method on patients after myocardial infarction that underwent coronary intervention on a single coronary vessel showed that in 7 of 8 successfully treated patients the dipole position matched well with the treated vessel. A small dipole moment in another patient indicated unsuccessful treatment. The method was implemented in a new 128-channel mapping system. Its active electrodes, battery powered measuring unit and optical computer interface help to minimize noise in ECG and guarantee patient´s safety. The results suggest that the method and mapping system offer useful tools for noninvasive identification of local repolarization changes in the myocardium., M. Tyšler, P. Kneppo, M. Turzová, J. Švehlíková, S. Karas, E. Hebláková, K. Hána, S. Filipová., and Obsahuje bibliografii
High frequency oscillatory ventilation (HFOV), contrary to conventional ventilation, enables a safe increase in tidal volume (VT) without endangering alveoli by volutrauma or barotrauma. The aim of the study is to introduce the concept of normocapnic high frequency oscillatory hyperventilation and to assess its effect upon oxygen gain under experiment al conditions. Laboratory pigs (n=9) were investigated under total intravenous anesthesia in three phases. Phase 1: Initial volume controlled HFOV period. Phase 2 : Hyperventilation - VT was increased by (46 ± 12) % when compared to normocapnic VT during phase 1. All other ventilatory parameters were unchanged. A significant increase in PaO 2 (by 3.75 ± 0.52 kPa, p<0.001) and decrease in PaCO 2 (by -2.05 ± 0.31 kPa, p<0.001) were obtained. Phase 3: Normocapnia during hyperventilation was achiev ed by an iterative increase in the CO 2 fraction in the inspiratory gas by a CO2 admixture. All ventilatory parameters were unchanged. A significant increase in PaO2 (by 3.79 ± 0.73 kPa, p<0.001), similar to that which was observed in phase 2, was preserved in phase 3 whereas normocapnia was fully re-established. The concept of high frequency normocapnic hyperventilation offers a lung protective strategy that significantly improves oxygenation whilst preserving normocapnia., K. Roubík, J. Pachl, V. Zábrodský., and Obsahuje bibliografii a bibliografické odkazy
Cardiac fibroblast-myofibroblast transformation (CMT) is a critical event in the initiation of myocardial fibrosis. Notch signaling has been shown to regulate myofibroblast transformation from other kinds of cells. However, whether Notch signaling is also involved in CMT remains unclear. In the present study, expressions of Notch receptors in cardiac fibroblasts (CFs) were examined, effects of Notch signaling inhibi tor N-[N-(3,5-difluorophenacetyl)- l-alanyl]-S-phenylglycine t-butyl ester (DAPT) and transforming growth factor-β1 (TGF-β1) on CMT were determined by increasing alpha-smooth muscle actin (α-SMA) expression and collagen synthesis, and Notch signaling was examined by analyzing expressions of Notch receptors. The results showed that: (1) Notch receptor 1, 2, 3 and 4 were all expressed in CFs; (2) DAPT promoted CMT in a time -dependent manner; (3) During the period of CMT induced by TGF-β1, expressions of Notch receptor 1, 3 and 4 in CFs were down-regulated, whereas there was no change for Notch receptor 2. Moreover, the downtrends of Notch 1, 3 and 4 were corresponding to the trend growth of α-SMA expression and collagen synthesis. These results suggested that inhibiting of Notch signaling might promote CMT. The down-regulations of Notch receptor 1, 3 and 4 induced by TGF-β1 may facilitate CMT. In conclusion, inhibition of Notch signaling might be a novel mech anism of CMT in myocardial fibrosis., Y.-H. Fan ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Fyziologický ústav AV ČR (FGÚ), význačná česká výzkumná instituce v oblasti fyziologie a patofyziologie živočichů a člověka, si v roce 2014 připomíná 60. výročí svého založení. Motto oslav „Od mozku přes srdce až po tkáňové náhrady“ vyjadřuje historický vývoj hlavních směrů výzkumu v ústavu. Již po 60 let zdejší vědci svými objevy prohlubují teoretické základy medicíny a objasňují podstatu mnoha závažných onemocnění člověka. Mezi nejvýznamnější akce k jubileu FGÚ patří nový cyklus přednášek pojmenovaný na počest slavného neurofyziologa dr. Jana Bureše. Odborné veřejnosti se tak představují významné osobnosti světové fyziologie, z nichž mnohé v minulosti s ústavem spolupracovaly nebo stále spolupracují. and Petr Zouhar, Olga Zimmermannová.