The determination of cytochrome c oxidase (COX) activity represents an important indicator for the evaluation of cell oxidative capacity. However, it has been shown repeatedly that different factors modify the rate of COX activity under various experimental conditions. The most important concern the ionic concentrations of the medium and the application of various detergents for the solubilization of mitochondrial membranes. We found the highest activity of COX in rat heart homogenates and mitochondria at 40-60 mM potassium phosphate. The rate of COX activity is dependent on the detergent/protein (P) ratio. Using n-dodecyl-b-D-maltoside (lauryl maltoside, LM) as the detergent, we obtained the highest activity at LM/P ratios of (50:100):1. By kinetic measurements of low-affinity binding sites in heart mitochondria, we found Vlim values of 4.3 and 22.2 mmol cytochrome c per min per mg P in the presence or absence of lauryl maltoside, respectively. The Km values were 16.7 mmol in the presence or absence of lauryl maltoside. Our results thus indicate that 1) the exact assessment of COX activity in heart homogenates and mitochondria requires the determination of optimum phosphate concentrations in the medium used, and 2) even small modifications of the experimental procedure may induce significant differences in the maximum values of COX activity., A. Stieglerová, Z. Drahota, B. Ošťádal, J. Houštěk., and Obsahuje bibliografii
Our study compared total C-peptide secretion after administration of whey proteins and whey proteins in combination with glucose with results of classical tests assessing beta cell function in the pancreas of healthy individuals. Eight young, healthy (7 males, 1 female; aged 20-26 years), nonobese (BMI: 17-25.9 kg/m2 ) participants with normal glucose tolerance underwent six C-peptide secretion tests. Three secretion tests measured C-peptide response to orally administered substances: whey proteins only (OWT), whey proteins with glucose (OWGT) and glucose only (OGTT); while three secretion tests measured C-peptide response to intravenously administered substances: arginine (AST), glucagon (GST) and glucose (IVGTT). OWT stimulated a greater (93 %, p<0.05) C-peptide response than AST and a 64 % smaller response (p<0.05) than OGTT. OWT also showed lower variability (p<0.05) in C-peptide responses compared to OWGT and OGTT. The greatest total C-peptide response was induced by OWGT (36 % higher than glucose). OWT consistently increased C-peptide concentrations with lower individual variability, while insignificantly increasing glucose levels. Results of this study suggest that both dietology and beta-cells capacity testing could take advantage of the unique property of whey proteins to induce C-peptide secretion., E. Wildová, ... [et al.]., and Obsahuje seznam literatury
Orexins (orexin A and B) are initially known to be a hypothalamic peptide critical for feeding and normal wakefulness. In addition, emerging evidence from behavioral tests suggests that orexins are also involved in the regulation of nociceptive processing, suggesting a novel potential therapeutic approach for pain treatment. Both spinal and supraspinal mechanisms appear to contribute to the role of orexin in nociception. In the spinal cord, dorsal root ganglion (DRG) neurons are primary afferent neurons that transmit peripheral stimuli to the pain-processing areas. Morphological results show that both orexin A and orexin-1 receptor are distributed in DRG neurons. Moreover, by using whole-cell patch-clamp recordings and calcium imaging measurements we found that orexin A induced excitability and intracellular calcium concentration elevation in the isolated rat DRG neurons, which was mainly dependent on the activation of spinal orexin-1 receptor. Based on these findings, we propose a hypothesis that the direct effect of orexin A on DRG neurons would represent a possible mechanism for the orexinergic modulation of spinal nociceptive transmission., J.-A. Yan, L. Ge, W. Huang, B. Song, X.-W. Chen, Z.-P. Yu., and Obsahuje bibliografii a bibliografické odkazy
Previous results have suggested that orexins causes a rise of intracellular free calcium ([Ca2+]i) in cultured rat dorsal root ganglion (DRG) neurons, implicating a role in nociception, but the underlying mechanism is unknown. Hence, the aim of the present study was to investigate whether the orexins-mediated signaling involves the PKC pathways in these sensory neurons. Cultured DRG neurons were loaded with 1 μmol Fura-2 AM and [Ca2+]i responses were quantified by the changes in 340/380 ratio using fluorescence imaging system. The orexin-1 receptor antagonist SB-334867-A (1 μM) inhibited the calcium responses to orexin-A and orexin-B (59.1±5.1 % vs. 200 nM orexin-A, n=8, and 67±3.8 % vs. 200 nM orexin-B, n=12, respectively). The PKC inhibitor chelerythrine (10 and 100 μM) significantly decreased the orexin-A (200 nM)-induced [Ca2+]i increase (59.4±4.8 % P<0.01, n=10 and 4.9±1.6 %, P<0.01, n=9) versus response to orexin-A). It was also found that chelerythrine dose-dependently inhibited the [Ca2+]i response to 200 nM orexin-B. In conclusion, our results suggest that orexins activate intracellular calcium signaling in cultured rat sensory neurons through PKC-dependent pathway, which may have important implications for nociceptive modulation and pain., M. Ozcan ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The microcirculation plays a crucial role in the interaction between blood and tissues both in physiological and pathophysiological states. Despite its critical role in numer ous diseases including diabetes, hypertension, sepsis or multiple organ failure, methods for direct visualization and quantitative assessm ent of human microcirculation at the bedside are limited. Orthogonal polarization spectral (OPS) imaging is a relatively new noninvasive method for assessment of human microcirculation without using fluorescent dyes. Recent clinical studies using OPS imaging in various pathological states have shown a wide spectrum of different clinical applications with evident impact on the diagnosis, treatment or prognosis assessment. Thus, there is a great effort to validate OPS imaging for various clinical purposes. The principles of OPS imaging, validation studies, its advantages, limitations, methods of quantitative assessment and current experience in clinical practice are discussed., V. Černý, Z. Turek, R. Pařízková., and Obsahuje bibliografii a bibliografické odkazy
It was hypothesized that an oscillation of tissue oxygen index (TOI) determined by near-infrared spectroscopy during recovery from exercise occurs due to feedback control of adenosine triphosphate and that frequency of the oscillation is affected by blood pH. In order to examine these hypotheses, we aimed 1) to determine whether there is an oscillation of TOI during recovery from exercise and 2) to determine the effect of blood pH on frequency of the oscillation of TOI. Three exercises were performed with exercise intensities of 30 % and 70 % peak oxygen uptake (Vo2peak) for 12 min and with exercise intensity of 70 % Vo2peak for 30 s. TOI during recovery from the exercise was analyzed by fast Fourier transform in order to obtain power spectra density (PSD). There was a significant difference in the frequency at which maximal PSD of TOI appeared (Fmax) between the exercises with 70 % Vo2peak for 12 min (0.0039±0 Hz) and for 30 s (0.0061±0.0028 Hz). However, there was no significant difference in Fmax between the exercises with 30 % (0.0043±0.0013 Hz) and with 70 % Vo2peak for 12 min despite differences in blood pH and blood lactate from the warmed fingertips. It is concluded that there was an oscillation in TOI during recovery from the three exercises. It was not clearly shown that there was an effect of blood pH on Fmax., T. Yano, R. Afroundeh, K. Shirakawa, C.-S. Lian, K. Shibata, Z. Xiao, T. Yunoki., and Obsahuje bibliografii
A mathematical description is presented of osmotic flows across both ideally semipermeable membranes and membranes permeable not only for the solvent but also for the solute. The principles of thermodynamics of irreversible processes used for the description are given and illustrated on the example of electroosmosis. Modern ideas about the physical basis of osmotic pressure on porous membranes are discussed and an experiment is described that models the processes of osmosis on a macroscopic level., K. Janáček, K. Sigler., and Obsahuje bibliografii
This article reviews the development of artificial bone substitutes from their older single-phase forms to novel multi-phase composites, mimicking the composition and architecture of natural bone tissue. The new generation of bone implants should be bioactive, i.e. they should induce the desired cellular responses, leading to integration of the material into the natural tissue and stimulating self-healing processes. Therefore, the first part of the review explains the common principles of the cellmaterial interaction and summarizes the strategies how to improve the biocompatibility and bioactivity of the materials by modifying the physico-chemical properties of the material surface, such as surface chemistry, wettability, electrical charge, rigidity, microroughness and especially nanoroughness. The latter has been shown to stimulate preferentially the growth of osteoblasts in comparison with other competitive cell types, such as fibroblasts, which could prevent fibrous tissue formation upon implantation. The second more specialized part of the review deals with materials suitable for bone contact and substitution, particularly novel polymer-based composites reinforced with fibres or inorganic particles and containing bioactive components, such as crystals of hydroxyapatite or other calcium phosphates, synthetic ligands for cell adhesion receptors or growth factors. Moreover, if they are degradable, they can be gradually replaced with a regenerating tissue., B. Vagaská ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Mesenchymal stem cells (MSCs) have been repeatedly shown to be able to repair bone defects. The aim of this study was to characterize the osteog enic differentiation of miniature pig MSCs and markers of this differentiation in vitro . Flow-cytometrically characterized MSCs were seeded on cultivation plastic (collagen I and vitronectin coated/uncoated) or plasma clot (PC)/plasma- alginate clot (PAC) scaffolds and differentiated in osteogenic medium. During three weeks of differentiation, the formation of nodules and deposition of calcium were visualized by Alizarin Red Staining. In addition, the production of alkaline phosphatase (ALP) activity was quantitatively detected by fluorescence. The expression of osteopontin, osteonectin and osteocalcin were assayed by immunohistochemistry and Western Blot analysis. We revealed a decrease of osteopontin expression in 2D and 3D environment during differentiation. The weak initial osteonectin signal, culminating on 7th or 14th day of differentiation, depends on collagen I and vitronectin coating in 2D system. The highest activity of ALP was detected on 21th day of osteogenic differentiation. The PC scaffolds provided better conditions for osteogenic differentiation of MSCs than PAC scaffolds in vitro . We also observed expected effects of collagen I and vitronectin on the acceleration of osteogenic differentiation of miniature pig MSC. Our results indicate similar ability of miniature pig MSCs osteogenic differentiation in 2D and 3D environment, but the expression of osteogenic marker s in scaffolds and ECM coated monolayers started earlier than in the monolayers without ECM., J. Juhásová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Osteoporosis in chronic diseases is very frequent and pathogenetically varied. It complicates the course of the underlying disease by the occurrence of fractures, which aggravate the quality of life and increase the mortality of patients from the underlying disease. The secondary deterioration of bone quality in chronic diseases, such as diabetes of type 1 and type 2 and/or other endocrine and metabolic disorders, as well as inflammatory diseases, including rheumatoid arthritis - are mostly associated with structural changes to collagen, altered bone turnover, increased cortical porosity and damage to the trabecular and cortical microarchitecture. Mechanisms of development of osteoporosis in some inborn or acquired disorders are discussed., I. Zofkova, P. Nemcikova., and Obsahuje bibliografii