NMDA receptors have received much attention over the last few decades, due to their role in many types of neural plasticity on the one hand, and their involvement in excitotoxicity on the other hand. There is great interest in developing clinically relevant NMDA receptor antagonists that would block excitotoxic NMDA receptor activation, without interfering with NMDA receptor function needed for normal synaptic transmission and plasticity. This review summarizes current understanding of the structure of NMDA receptors and the mechanisms of NMDA receptor activation and modulation, with special attention given to data describing the properties of various types of NMDA receptor inhibition. Our recent analyses point to certain neurosteroids as NMDA receptor inhibitors with desirable properties. Specifically, these compounds show use-dependent but voltage-independent block, that is predicted to preferentially target excessive tonic NMDA receptor activation. Importantly, neurosteroids are also characterized by use-independent unblock, compatible with minimal disruption of normal synaptic transmission. Thus, neurosteroids are a promising class of NMDA receptor modulators that may lead to the development of neuroprotective drugs with optimal therapeutic profiles., V. Vyklicky ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Agonist-induced subcellular redistribution of G-protein coupled receptors (GPCR) and of trimeric guanine-nucleotide binding regulatory proteins (G-proteins) represent mechanisms of desensitization of hormone response, which have been studied in our laboratory since 1989. This review brings a short summary of these results and also presents information about related literature data covering at least small part of research carried out in this area. We have also mentioned sodium plus potassium dependent adenosine triphosp hatase (Na, K-ATPase) and 3H-ouabain binding as useful reference standard of plasma membrane purity in the brain., Z. Drastichová, L. Bouřová, V. Lisý, L. Hejnová, V. Rudajev, J. Stöhr, D. Durchánková, P. Ostašov, J. Teisinger, T. Soukup, J. Novotný, P. Svoboda., and Obsahuje bibliografii a bibliografické odkazy
Kainic acid (KA) is a potent neurotoxic substance valuable in research of temporal lobe epilepsy. We tested how subconvulsive dose of KA influences spontaneous behavior of adult Wistar rats. Animals were treated with 5 mg/kg of KA and tested in Laboras open field test for one hour in order to evaluate various behavioral parameters. Week after the KA treatment animals were tested again in Laboras open field test. Finally, rat’s brains were sliced and stained with Fluoro-Jade B to detect possible neuronal degeneration. Treatment with KA increased the time spent by locomotion (p<0.01), exploratory rearing (p<0.05) and animals traveled longer distance (p<0.01). These parameters tended to increase thirty minutes after KA administration. Week after the treatment we did not found differences in any measured behavioral parameter. Histology in terms of Fluoro-Jade B staining did not reveal any obvious neuronal damage in hippocampus. These results demonstrate that subconvulsive KA dose changes the behavioral parameters only transiently. Clarification of timing of the KA induced changes may contribute to understand mutual relationship between non-convulsive seizures and behavioral/cognitive consequences., V. Riljak, D. Marešová, J. Pokorný, K. Jandová., and Obsahuje bibliografii
Extracts of Helleborus roots were traditionally used in the Balkan area for their analgesic action. We report that the pure natural product MCS-18 isolated from this source is a potent, specific and reversible antagonist of the capsaicin receptor, TRPV1, expressed in rat dorsal root ganglion (DRG) neurons. TRPV1 is a nonselective cation channel expressed in a subset of cutaneous and visceral sensory nerve endings and activated by noxious heat, acidity and fatty acid metabolites of arachidonic acid, with a decisive role in inflammatory heat hyperalgesia. MCS-18 inhibited the increase in intracellular calcium concentration evoked in DRG neurons by capsaicin (300 nM) and low pH (5.5) but not by heat (43 ºC). The substance had no effect on the responses mediated by acid-sensing ion channels (ASICs) or the irritant receptor TRPA1. Whole-cell patch-clamp was used to confirm the inhibition of capsaicin-induced currents by MCS-18 which was dose-dependent. The mechanism of inhibition does not require an intact cell, as capsaicin-induced currents were also inhibited in the excised outside-out configuration. The antagonism of the capsaicin and proton action on native TRPV1 by MCS-18 may be of interest for pain therapy., C. Neacsu ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Cardiovascular (CV) mortality was reduced more than 50 % in the Czech population at the turn of the century, due to an improvement of major CV risk factors in the general population, interventional procedures implemented into the treatment of acute coronar y events, and new drugs (ACE inhibitors, statins etc.) for CV prevention (Czech MONICA and post-MONICA studies, 1985-2008). An insufficient level of preventive efforts is described in the Czech patients after acute coronary syndrome (Czech part of the EURO ASPIRE studies, 1995-2013). Drug underdosing and wrong patients’ compliance to life style and drug therapy recommendations represent two main reasons of this unsatisfactory situation. The residual vascular risk of patients with stable coronary heart diseas e (CHD) is still high due to a poor control of conventional risk factors on the one hand, and due to increasing weight and glucose metabolism abnormalities on the other hand. Patients with insulin resistance and glucose dis orders have more frequently non-LDL-C dyslipidemia (atherogenic dyslipidemia), hypertriglyceridemic waist and high atherogenic index of plasma (AIP>0.24), i.e. markers of residual CV risk. Among others increased dose of statins and combined lipid modifying therapy should be implemented in patients with CHD, diabetes or metabolic syndrome., H. Rosolová, B. Nussbaumerová, O. Mayer Jr., R. Cífková, J. Bruthans., and Obsahuje bibliografii
The most common cause of sudden cardiac death is ventricular fibrillation (VF). In addition to the status, size and location of the ventricular focus, a major pathogenic mechanism triggering VF is autonomic dysbalance (d isturbance). This term refers to a wide range of reflex changes in the ratio of sympathetic to vagal ventricular activation over time, occurring immediately after coronary artery occlusion at the onset of acute myocardial infarction (AMI). Another trigger of VF is autonomic disturbance due to emotional stress. Experimental and clinical research into autonomic disturbances associated with coronary artery occlusion and emotional stress was given considerable attention as early as some 30 years ago when researchers were already searching for ways of inhibiting autonomic disturbances using predominant sympathetic and vagal activation by beta-blockers (BB) and atropine, respectively. The aim of our paper is to compare results obtained 30 years ago with current status of experimental and clinical research into SCD preven tion. Another aim is to identify questions that have remained unanswered to date; answers to these outstanding questions could help further reduce the risk of SCD., J. Pokorný, V. Staněk, M. Vrána., and Obsahuje bibliografii a bibliografické odkazy
This study aimed to investigate the vasoactivity of sulfur dioxide (SO2), a novel gas identified from vascular tissue, in rat thoracic aorta. The thoracic aorta was isolated, cut into rings, and mounted in organ-bath chambers. After equilibrium, the rings were gradually stretched to a resting tension. Isometric tension was recorded under the treatments with vasoconstrictors, SO2 derivatives, and various drugs as pharmacological interventions. In endothelium-intact aortic rings constricted by 1 μM phenylephrine (PE), SO2 derivatives (0.5 – 8 mM) caused a dose-dependent relaxation. Endothelium removal and a NOS inhibitor L-NAME reduced the relaxation to low doses of SO2 derivatives, but not that to relatively high doses (≥ 2 mM). In endothelium-denuded rings, SO2 derivatives attenuat ed vasoconstriction induced by high K+ (60 mM) or CaCl2 (0.01-10 mM). The relaxation to SO2 derivatives in PE-constricted rings without endothelium was significantly inhibited by blockers of ATP-sensitive K+ (KATP) and Ca2+-activated K+ (KCa) channels, but not by those of voltage-dependent K+ channels, Na+-K+-ATPase or Na+-Ca2+ exchanger. SO2 relaxed vessel tone via endothelium-dependent mechanisms associated with NOS activation, and via endothelium-independent mechanisms dependent on the inhibition of voltage-gated Ca2+ channels, and the opening of KATP and KCa channels., Y.-K- Wang., and Obsahuje seznam literatury
The administration of creatine (5 g/day for one month) to 11 young active sportsmen affected their urinary excretion of creatine, creatinine, and thiodiglycolic acid (TDGA) as well as blood levels of homocysteine, vitamin B12 and folates. The probands were divided into four groups, according to the amount of creatine found in urine, and of folates and vitamin B12 determined in blood. The changes of folates and vitamin B12 were mutually reciprocal. Each group utilized CR as donor of one- and two-carbon (1C and 2C) units by means of homocysteine (HoCySH), folates, and vitamin B12, in different metabolic pathways. In 10 men the creatine administration was accompanied by an increase of HoCySH level in blood, while in the last man, with accidentally discovered hyperhomocysteinemia, the HoCySH level dropped by 50 %. Differences between initial and terminal TDGA levels indicate that creatine affects equilibria of redox processes. Creatinine excretion into urine changed in the dependence on the extent of metabolic disturbances., T. Navrátil ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Inhalational anesthetic-induced preconditioning (APC) has been shown to reduce infarct size and attenuate contractile dysfunction caused by myocardial ischemia. Only a few studies have reported the effects of APC on arrhythmias during myocardial ischemia-reperfusion injury, focusing exclusively on reperfusion. Accordingly, the ai m of the present study was to examine the influence of APC on ventricular arrhythmias evoked by regional no-flow ischemia. APC was induced in adult male Wistar rats by 12-min exposures to two different concentrations (0.5 and 1.0 MAC) of isoflurane followed by 30-min wash-out periods. Ventricular arrhythmias were assessed in the isolated perfused hearts during a 45- min regional ischemia and a subsequent 15-min reperfusion. Myocardial infarct size was determined after an additional 45 min of reperfusion. The incidence, severity and duration of ventricular arrhythmias during ischemia were markedly reduced by APC. The higher concentration of isoflurane had a larger effect on the incidence of ventricular fibrillation than the lower concentration. The incidence of ventricular tachycardia and reversible ventricular fibrillation during reperfusion was also significantly reduced by APC; the same was true for myocardial infarct size. In conclusion, we have shown that preconditioning with isoflurane confers profound protection against myocardial is chemia- and reperfusion-induced arrhythmias and lethal myocardial injury., H. Říha ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
We examined the protective effect of radon inhalation on streptozotocin (STZ)-induced type-1 diabetes in mice. Mice inhaled radon at concentrations of 1000, 2500, and 5500 Bq/m3 for 24 hours before STZ administration. STZ administration induced characteristics of type-1 diabetes such as hyperglycemia and hypoinsulinemia; however, radon inhalation at doses of 1000 and 5500 Bq/m3 significantly suppressed the elevation of blood glucose in diabetic mice. Serum insulin was significantly higher in mice pre-treated with radon at a dose of 1000 Bq/m3 than in mice treated with a sham. In addition, superoxide dismutase activities and total glutathione contents were significantly higher and lipid peroxide was significantly lower in mice pre-treated with radon at doses of 1000 and 5500 Bq/m3 than in mice treated with a sham. These results were consistent with the result that radon inhalation at 1000 and 5500 Bq/m3 suppressed hyperglycemia. These findings suggested that radon inhalation suppressed STZ-induced type-1 diabetes through the enhancement of antioxidative functions in the pancreas., Y. Nishiyama, ... [et al.]., and Obsahuje seznam literatury