The purpose of the study was to check whether hypoxia of corneal tissue increases the collagenolytic activity due to release of reactive oxygen and nitrogen species. Rats were exposed to hypoxia 10 % O2 for 4, 14, and 21 days. The radical tissue injury was measured by the level of nitrotyrosine and changes in the lipoperoxide-related fluorophores. Collagen protein composition was analyzed by slab gel electrophoresis. The activity of gelatinolytic enzymes was studied using the zymography. The vascularization of the corneas was measured. We found no differences in the corneal tissue in the gel electrophoretic profile of collagenous proteins and gelatinolytic activity between normoxic and hypoxic rats. We did not find any sign of radical tissue injury. There were no changes in the vascularization of corneas after exposition to hypoxia. The environmental 10 % hypoxia does not induce radical tissue injury and an increase of collagenolytic activity in the rat cornea., G. Mahelková, J. Korynta, A. Moravová, J. Novotná, R. Vytášek, J. Wilhelm., and Obsahuje bibliografii a bibliografické odkazy
Under normal conditions, antioxidants at the corneal surface are balanced with the production of reactive oxygen species without any toxic effects. Danger from oxidative stress appears when natural antioxidants are overwhelmed leading to antioxidant/prooxidant imbalance. The aim of the present study was to examine the activities of enzymes contributing to the antioxidant/prooxidant balance in normal corneal epithelium of various mammals. The enzyme activities of antioxidant superoxide dismutase and glutathione peroxidase, as well as prooxidant xanthine oxidoreductase/xanthine oxidase were examined using biochemical methods. Results show that superoxide dismutase activity is high in rabbits and guinea pigs, whereas in pigs the activity is low and in cows it is nearly absent. In contrast, glutathione peroxidase activity is high in cows, pigs and rabbits, whereas in guinea pigs the activity is low. As far as prooxidant enzymes are concerned, elevated xanthine oxidoreductase/xanthine oxidase activities were found in rabbits, lower activities in guinea pigs, very low activity in cows and no activity in pigs. In conclusion, the above results demonstrate inter-species variations in activities of enzymes participating in antioxidant/prooxidant balance in the corneal epithelium. It is suggested that the levels of antioxidant and prooxidant enzymes studied in the corneal epithelium might be associated with the diurnal or nocturnal activity of animals. UV rays decompose hydrogen peroxide to damaging hydroxyl radicals and perhaps for this reason large animals with diurnal activity (cow, pig) require more effective peroxide removal (high glutathione peroxidase activity) together with the suppression of peroxide production (low superoxide dismutase activity, low xanthine oxidoreductase activity)., J. Kovačeva, J. Pláteník, M. Vejražka, S. Štípek, T. Ardan, Č. Čejka, A. Midelfart, J. Čejková., and Obsahuje bibliografii a bibliografické odkazy
The rook (Corvus frugilegus) is widely distributed in the Western Palaearctic and is generally regarded as a pest species of agriculture and at airfields. In this study we describe a schematic eye model for the rook. Digital photographs of the intact enucleated eye gave the gross dimensions. The lens and the cornea of the rook’s schematic eye were found to have an almost equal refractive power of Fl 59.53 D and Fc 62.63 D. The rook’s schematic eye has an axial length of 14.50mm and a total power of F 108.86 D. The eye shape is similar to the ‘flat’ eye type. The calculated f-number² value of 3.63 indicates that the rook’s eye is well adapted to high light levels and is not suitable for night vision.